Automatic regularization parameter selection for the total variation mixed noise image restoration framework

Descripción del Articulo

Image restoration consists in recovering a high quality image estimate based only on observations. This is considered an ill-posed inverse problem, which implies non-unique unstable solutions. Regularization methods allow the introduction of constraints in such problems and assure a stable and uniqu...

Descripción completa

Detalles Bibliográficos
Autor: Rojas Gómez, Renán Alfredo
Formato: tesis de maestría
Fecha de Publicación:2012
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/4461
Enlace del recurso:http://hdl.handle.net/20.500.12404/4461
Nivel de acceso:acceso abierto
Materia:Procesamiento de imágenes digitales
Reconocimiento de imágenes
Algoritmos
https://purl.org/pe-repo/ocde/ford#2.02.05
id PUCP_5f02b292b5b69e5122d19c970a35c4de
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/4461
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Automatic regularization parameter selection for the total variation mixed noise image restoration framework
title Automatic regularization parameter selection for the total variation mixed noise image restoration framework
spellingShingle Automatic regularization parameter selection for the total variation mixed noise image restoration framework
Rojas Gómez, Renán Alfredo
Procesamiento de imágenes digitales
Reconocimiento de imágenes
Algoritmos
https://purl.org/pe-repo/ocde/ford#2.02.05
title_short Automatic regularization parameter selection for the total variation mixed noise image restoration framework
title_full Automatic regularization parameter selection for the total variation mixed noise image restoration framework
title_fullStr Automatic regularization parameter selection for the total variation mixed noise image restoration framework
title_full_unstemmed Automatic regularization parameter selection for the total variation mixed noise image restoration framework
title_sort Automatic regularization parameter selection for the total variation mixed noise image restoration framework
author Rojas Gómez, Renán Alfredo
author_facet Rojas Gómez, Renán Alfredo
author_role author
dc.contributor.advisor.fl_str_mv Rodríguez Valderrama, Paúl Antonio
dc.contributor.author.fl_str_mv Rojas Gómez, Renán Alfredo
dc.subject.es_ES.fl_str_mv Procesamiento de imágenes digitales
Reconocimiento de imágenes
Algoritmos
topic Procesamiento de imágenes digitales
Reconocimiento de imágenes
Algoritmos
https://purl.org/pe-repo/ocde/ford#2.02.05
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.05
description Image restoration consists in recovering a high quality image estimate based only on observations. This is considered an ill-posed inverse problem, which implies non-unique unstable solutions. Regularization methods allow the introduction of constraints in such problems and assure a stable and unique solution. One of these methods is Total Variation, which has been broadly applied in signal processing tasks such as image denoising, image deconvolution, and image inpainting for multiple noise scenarios. Total Variation features a regularization parameter which defines the solution regularization impact, a crucial step towards its high quality level. Therefore, an optimal selection of the regularization parameter is required. Furthermore, while the classic Total Variation applies its constraint to the entire image, there are multiple scenarios in which this approach is not the most adequate. Defining different regularization levels to different image elements benefits such cases. In this work, an optimal regularization parameter selection framework for Total Variation image restoration is proposed. It covers two noise scenarios: Impulse noise and Impulse over Gaussian Additive noise. A broad study of the state of the art, which covers noise estimation algorithms, risk estimation methods, and Total Variation numerical solutions, is included. In order to approach the optimal parameter estimation problem, several adaptations are proposed in order to create a local-fashioned regularization which requires no a-priori information about the noise level. Quality and performance results, which include the work covered in two recently published articles, show the effectivity of the proposed regularization parameter selection and a great improvement over the global regularization framework, which attains a high quality reconstruction comparable with the state of the art algorithms.
publishDate 2012
dc.date.created.es_ES.fl_str_mv 2012
dc.date.accessioned.es_ES.fl_str_mv 2013-03-27T20:00:03Z
dc.date.available.es_ES.fl_str_mv 2013-03-27T20:00:03Z
dc.date.issued.fl_str_mv 2013-03-27
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/4461
url http://hdl.handle.net/20.500.12404/4461
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/094238c3-3989-4389-9a02-aef6499ccaf0/download
https://tesis.pucp.edu.pe/bitstreams/fbd7f752-82aa-4999-8f63-4c640daf6214/download
https://tesis.pucp.edu.pe/bitstreams/b5a8f3b9-5b21-4a77-a9dc-b389988b7ceb/download
https://tesis.pucp.edu.pe/bitstreams/901cd48c-8790-48d1-ac8a-e359a6399991/download
bitstream.checksum.fl_str_mv 700f21c34325070cb2dde1a688e6911b
8a4605be74aa9ea9d79846c1fba20a33
20d263821f33e379f5fe0481b4f0425b
73767c405b37f8b0a3bb6b6cb8f4ab9f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839177265985880064
spelling Rodríguez Valderrama, Paúl AntonioRojas Gómez, Renán Alfredo2013-03-27T20:00:03Z2013-03-27T20:00:03Z20122013-03-27http://hdl.handle.net/20.500.12404/4461Image restoration consists in recovering a high quality image estimate based only on observations. This is considered an ill-posed inverse problem, which implies non-unique unstable solutions. Regularization methods allow the introduction of constraints in such problems and assure a stable and unique solution. One of these methods is Total Variation, which has been broadly applied in signal processing tasks such as image denoising, image deconvolution, and image inpainting for multiple noise scenarios. Total Variation features a regularization parameter which defines the solution regularization impact, a crucial step towards its high quality level. Therefore, an optimal selection of the regularization parameter is required. Furthermore, while the classic Total Variation applies its constraint to the entire image, there are multiple scenarios in which this approach is not the most adequate. Defining different regularization levels to different image elements benefits such cases. In this work, an optimal regularization parameter selection framework for Total Variation image restoration is proposed. It covers two noise scenarios: Impulse noise and Impulse over Gaussian Additive noise. A broad study of the state of the art, which covers noise estimation algorithms, risk estimation methods, and Total Variation numerical solutions, is included. In order to approach the optimal parameter estimation problem, several adaptations are proposed in order to create a local-fashioned regularization which requires no a-priori information about the noise level. Quality and performance results, which include the work covered in two recently published articles, show the effectivity of the proposed regularization parameter selection and a great improvement over the global regularization framework, which attains a high quality reconstruction comparable with the state of the art algorithms.TesisspaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Procesamiento de imágenes digitalesReconocimiento de imágenesAlgoritmoshttps://purl.org/pe-repo/ocde/ford#2.02.05Automatic regularization parameter selection for the total variation mixed noise image restoration frameworkinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Procesamiento de señales e imágenes digitalesMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de señales e imágenes digitales07754238613077https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALROJAS_RENAN_IMAGE_RESTORATION.pdfROJAS_RENAN_IMAGE_RESTORATION.pdfapplication/pdf12846754https://tesis.pucp.edu.pe/bitstreams/094238c3-3989-4389-9a02-aef6499ccaf0/download700f21c34325070cb2dde1a688e6911bMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/fbd7f752-82aa-4999-8f63-4c640daf6214/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTROJAS_RENAN_IMAGE_RESTORATION.pdf.txtROJAS_RENAN_IMAGE_RESTORATION.pdf.txtExtracted texttext/plain115134https://tesis.pucp.edu.pe/bitstreams/b5a8f3b9-5b21-4a77-a9dc-b389988b7ceb/download20d263821f33e379f5fe0481b4f0425bMD55falseAnonymousREADTHUMBNAILROJAS_RENAN_IMAGE_RESTORATION.pdf.jpgROJAS_RENAN_IMAGE_RESTORATION.pdf.jpgIM Thumbnailimage/jpeg31912https://tesis.pucp.edu.pe/bitstreams/901cd48c-8790-48d1-ac8a-e359a6399991/download73767c405b37f8b0a3bb6b6cb8f4ab9fMD56falseAnonymousREAD20.500.12404/4461oai:tesis.pucp.edu.pe:20.500.12404/44612025-07-18 13:04:19.881http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.384119
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).