Propuesta de mejora en el proceso de migración de los clientes a los canales digitales de una entidad bancaria mediante herramientas de data analytics y optimización matemática
Descripción del Articulo
Actualmente, la Transformación Digital está tomando mayor importancia a medida que las empresas se van actualizando. Los bancos no son la excepción, ya que cada vez realizan mayores esfuerzos económicos para promover la migración de los clientes a sus canales digitales. Esto implica beneficios como...
| Autores: | , |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2022 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/24342 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/24342 |
| Nivel de acceso: | acceso abierto |
| Materia: | Bancos--Innovaciones tecnológicas Análisis de datos Optimización matemática https://purl.org/pe-repo/ocde/ford#2.11.04 |
| Sumario: | Actualmente, la Transformación Digital está tomando mayor importancia a medida que las empresas se van actualizando. Los bancos no son la excepción, ya que cada vez realizan mayores esfuerzos económicos para promover la migración de los clientes a sus canales digitales. Esto implica beneficios como reducción de costos en canales físicos, incremento en la eficiencia de sus procesos y en el nivel de experiencia al cliente. Esta investigación tiene como objetivo principal plantear un modelo de negocio que permita potenciar un enfoque de atención digital hacia una visión centrada en el cliente. Por ello, el presente trabajo tiene como finalidad promover la migración de los clientes hacia los canales digitales de una entidad bancaria. La estrategia de negocio propuesta se sustenta en la aplicación de dos metodologías, las cuales son Data Analytics y Optimización Matemática. Por un lado, se utiliza la primera herramienta para realizar un análisis de clúster de clientes según su nivel de digitalidad. Además, se desarrolla un modelo de Machine Learning para la clasificación de los clientes. Por otro lado, se realiza una asignación óptima de asesores a cada uno de los clústeres según su nivel de efectividad en la contactabilidad de clientes mediante Optimización Matemática. Asimismo, se emplea esta herramienta para poder identificar a qué clústeres se les aplica una estrategia de migración como primer MVP para poder maximizar la utilidad. La propuesta se aplica a cerca de 22 mil clientes por agencia lo que permite al banco obtener un ahorro económico equivalente a S/27,927.23, el cual podría aumentar potencialmente a 11 millones de soles aproximadamente si se aplica a la totalidad de agencias. En síntesis, según los resultados obtenidos, se valida que la incorporación de un enfoque dirigido a la Transformación Digital mediante herramientas de Data Analytics y Optimización Matemática genera beneficios económicos y operacionales dentro de una entidad bancaria. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).