Modelo computacional de minería de microblogs para el análisis del comportamiento del consumidor de telefonía celular
Descripción del Articulo
Los mensajes de Twitter están siendo cada vez más usados para determinar el sentimiento de los consumidores de servicios o productos. Para ello se hacen uso de diversas técnicas computacionales, desde las tradicionales adaptadas de problemas de clasificación de textos y las recientes que usan modelo...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2016 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/7515 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/7515 |
| Nivel de acceso: | acceso abierto |
| Materia: | Procesamiento en lenguaje natural (Computación) Emociones--Ontología Telefonía celular--Redes sociales Redes sociales--Minería de datos https://purl.org/pe-repo/ocde/ford#1.02.00 |
| id |
PUCP_32d31de3c818c449d83ddcaa8c174516 |
|---|---|
| oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/7515 |
| network_acronym_str |
PUCP |
| network_name_str |
PUCP-Tesis |
| repository_id_str |
. |
| dc.title.es_ES.fl_str_mv |
Modelo computacional de minería de microblogs para el análisis del comportamiento del consumidor de telefonía celular |
| title |
Modelo computacional de minería de microblogs para el análisis del comportamiento del consumidor de telefonía celular |
| spellingShingle |
Modelo computacional de minería de microblogs para el análisis del comportamiento del consumidor de telefonía celular Apaza Delgado, Santiago Hernán Procesamiento en lenguaje natural (Computación) Emociones--Ontología Telefonía celular--Redes sociales Redes sociales--Minería de datos https://purl.org/pe-repo/ocde/ford#1.02.00 |
| title_short |
Modelo computacional de minería de microblogs para el análisis del comportamiento del consumidor de telefonía celular |
| title_full |
Modelo computacional de minería de microblogs para el análisis del comportamiento del consumidor de telefonía celular |
| title_fullStr |
Modelo computacional de minería de microblogs para el análisis del comportamiento del consumidor de telefonía celular |
| title_full_unstemmed |
Modelo computacional de minería de microblogs para el análisis del comportamiento del consumidor de telefonía celular |
| title_sort |
Modelo computacional de minería de microblogs para el análisis del comportamiento del consumidor de telefonía celular |
| author |
Apaza Delgado, Santiago Hernán |
| author_facet |
Apaza Delgado, Santiago Hernán |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Beltrán Castañón, César Armando |
| dc.contributor.author.fl_str_mv |
Apaza Delgado, Santiago Hernán |
| dc.subject.es_ES.fl_str_mv |
Procesamiento en lenguaje natural (Computación) Emociones--Ontología Telefonía celular--Redes sociales Redes sociales--Minería de datos |
| topic |
Procesamiento en lenguaje natural (Computación) Emociones--Ontología Telefonía celular--Redes sociales Redes sociales--Minería de datos https://purl.org/pe-repo/ocde/ford#1.02.00 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.00 |
| description |
Los mensajes de Twitter están siendo cada vez más usados para determinar el sentimiento de los consumidores de servicios o productos. Para ello se hacen uso de diversas técnicas computacionales, desde las tradicionales adaptadas de problemas de clasificación de textos y las recientes que usan modelos de aprendizaje de máquina. En ambos enfoques se debe desarrollar una serie de etapas que van desde el pre–procesamiento hasta la evaluación. El presente documento muestra el resultado del proceso de aplicación de diversas técnicas de Análisis de Sentimiento para poder asignar una polaridad positiva, negativa o neutral a los tweets de los consumidores de telefonía celular en el Perú, con la finalidad de poder identificar cual es el comportamiento que presentan los clientes de las empresas de telefonía celular representado en opiniones vertidas en la red social Twitter. Para ello se extrajeron 26,917,539 publicaciones de la red social Twiter durante 2 periodos, cada uno de 30 días. Estas publicaciones corresponden a los tweets de los seguidores de tres empresas de telefonía celular en el Perú, incluyendo una relativamente nueva en el mercado peruano. El procedimiento seguido comprendió las siguientes tareas: a) Recolección de tweets de los seguidores de las empresas de telefonía celular; b) Pre–procesamiento de la data obtenida para poder identificar elementos importantes de cada tweet; c) Filtrado de elementos poco relevantes, o ruido; y d) Clasificación de cada publicación basado en las características obtenidas en etapas previas. Los resultados obtenidos nos muestran que la introducción de un diccionario de lexicones incrementó el número de términos que pueden ser considerados para la clasificación. Así mismo, el uso de este diccionario al cual se le aumento nuevos términos permitió incrementar la tasa de clasificación en un 0,75%. Finalmente, gracias a estas técnicas de análisis de sentimiento, es posible explotar el contenido de redes sociales de manera que puedan servir a las corporaciones para la toma de decisiones, especialmente de servicio a sus usuarios. |
| publishDate |
2016 |
| dc.date.accessioned.es_ES.fl_str_mv |
2016-11-26T22:01:18Z |
| dc.date.available.es_ES.fl_str_mv |
2016-11-26T22:01:18Z |
| dc.date.created.es_ES.fl_str_mv |
2016 |
| dc.date.issued.fl_str_mv |
2016-11-26 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/7515 |
| url |
http://hdl.handle.net/20.500.12404/7515 |
| dc.language.iso.es_ES.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
| dc.publisher.country.es_ES.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Tesis |
| collection |
PUCP-Tesis |
| bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/8cd856fb-01f6-4896-a98e-193d0554cd71/download https://tesis.pucp.edu.pe/bitstreams/d610c3bc-27bc-4889-ad37-b46ab15fb140/download https://tesis.pucp.edu.pe/bitstreams/12ab1feb-3c6f-4a02-b53b-e6fc6c75d518/download https://tesis.pucp.edu.pe/bitstreams/6476b521-8b42-49a1-83e0-e12425833f08/download https://tesis.pucp.edu.pe/bitstreams/702c1c7f-f567-4f84-abac-25acb5d8c3dd/download |
| bitstream.checksum.fl_str_mv |
bdb7fb1b4b4acbfea5634986e0e2b99a 5a4ffbc01f1b5eb70a835dac0d501661 8a4605be74aa9ea9d79846c1fba20a33 5cd3e578371ebaedf0d74eda4e8e10c5 9d950331bfc253ea8840341378dd9417 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
| repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
| _version_ |
1839177400725798912 |
| spelling |
Beltrán Castañón, César ArmandoApaza Delgado, Santiago Hernán2016-11-26T22:01:18Z2016-11-26T22:01:18Z20162016-11-26http://hdl.handle.net/20.500.12404/7515Los mensajes de Twitter están siendo cada vez más usados para determinar el sentimiento de los consumidores de servicios o productos. Para ello se hacen uso de diversas técnicas computacionales, desde las tradicionales adaptadas de problemas de clasificación de textos y las recientes que usan modelos de aprendizaje de máquina. En ambos enfoques se debe desarrollar una serie de etapas que van desde el pre–procesamiento hasta la evaluación. El presente documento muestra el resultado del proceso de aplicación de diversas técnicas de Análisis de Sentimiento para poder asignar una polaridad positiva, negativa o neutral a los tweets de los consumidores de telefonía celular en el Perú, con la finalidad de poder identificar cual es el comportamiento que presentan los clientes de las empresas de telefonía celular representado en opiniones vertidas en la red social Twitter. Para ello se extrajeron 26,917,539 publicaciones de la red social Twiter durante 2 periodos, cada uno de 30 días. Estas publicaciones corresponden a los tweets de los seguidores de tres empresas de telefonía celular en el Perú, incluyendo una relativamente nueva en el mercado peruano. El procedimiento seguido comprendió las siguientes tareas: a) Recolección de tweets de los seguidores de las empresas de telefonía celular; b) Pre–procesamiento de la data obtenida para poder identificar elementos importantes de cada tweet; c) Filtrado de elementos poco relevantes, o ruido; y d) Clasificación de cada publicación basado en las características obtenidas en etapas previas. Los resultados obtenidos nos muestran que la introducción de un diccionario de lexicones incrementó el número de términos que pueden ser considerados para la clasificación. Así mismo, el uso de este diccionario al cual se le aumento nuevos términos permitió incrementar la tasa de clasificación en un 0,75%. Finalmente, gracias a estas técnicas de análisis de sentimiento, es posible explotar el contenido de redes sociales de manera que puedan servir a las corporaciones para la toma de decisiones, especialmente de servicio a sus usuarios.TesisspaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Procesamiento en lenguaje natural (Computación)Emociones--OntologíaTelefonía celular--Redes socialesRedes sociales--Minería de datoshttps://purl.org/pe-repo/ocde/ford#1.02.00Modelo computacional de minería de microblogs para el análisis del comportamiento del consumidor de telefonía celularinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMagíster en Ciencias de la ComputaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoCiencias de la Computación29561260https://orcid.org/0000-0002-0173-4140611087https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALAPAZA_SANTIAGO_MODELO_COMPUTACIONAL.pdfAPAZA_SANTIAGO_MODELO_COMPUTACIONAL.pdfapplication/pdf9929095https://tesis.pucp.edu.pe/bitstreams/8cd856fb-01f6-4896-a98e-193d0554cd71/downloadbdb7fb1b4b4acbfea5634986e0e2b99aMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://tesis.pucp.edu.pe/bitstreams/d610c3bc-27bc-4889-ad37-b46ab15fb140/download5a4ffbc01f1b5eb70a835dac0d501661MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/12ab1feb-3c6f-4a02-b53b-e6fc6c75d518/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTAPAZA_SANTIAGO_MODELO_COMPUTACIONAL.pdf.txtAPAZA_SANTIAGO_MODELO_COMPUTACIONAL.pdf.txtExtracted texttext/plain74579https://tesis.pucp.edu.pe/bitstreams/6476b521-8b42-49a1-83e0-e12425833f08/download5cd3e578371ebaedf0d74eda4e8e10c5MD54falseAnonymousREADTHUMBNAILAPAZA_SANTIAGO_MODELO_COMPUTACIONAL.pdf.jpgAPAZA_SANTIAGO_MODELO_COMPUTACIONAL.pdf.jpgIM Thumbnailimage/jpeg29374https://tesis.pucp.edu.pe/bitstreams/702c1c7f-f567-4f84-abac-25acb5d8c3dd/download9d950331bfc253ea8840341378dd9417MD55falseAnonymousREAD20.500.12404/7515oai:tesis.pucp.edu.pe:20.500.12404/75152025-07-18 12:56:25.285http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.411704 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).