Control of autonomous multibody vehicles using artificial intelligence

Descripción del Articulo

The field of autonomous driving has been evolving rapidly within the last few years and a lot of research has been dedicated towards the control of autonomous vehicles, especially car-like ones. Due to the recent successes of artificial intelligence techniques, even more complex problems can be solv...

Descripción completa

Detalles Bibliográficos
Autor: Roder, Benedikt
Formato: tesis de maestría
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/18661
Enlace del recurso:http://hdl.handle.net/20.500.12404/18661
Nivel de acceso:acceso abierto
Materia:Vehículos--Control automático
Aprendizaje automático (Inteligencia artificial)
Controladores programables--Redes neuronales
https://purl.org/pe-repo/ocde/ford#2.02.03
id PUCP_1609d0b394ba6e60116603f3a0d6fd35
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/18661
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Control of autonomous multibody vehicles using artificial intelligence
title Control of autonomous multibody vehicles using artificial intelligence
spellingShingle Control of autonomous multibody vehicles using artificial intelligence
Roder, Benedikt
Vehículos--Control automático
Aprendizaje automático (Inteligencia artificial)
Controladores programables--Redes neuronales
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Control of autonomous multibody vehicles using artificial intelligence
title_full Control of autonomous multibody vehicles using artificial intelligence
title_fullStr Control of autonomous multibody vehicles using artificial intelligence
title_full_unstemmed Control of autonomous multibody vehicles using artificial intelligence
title_sort Control of autonomous multibody vehicles using artificial intelligence
author Roder, Benedikt
author_facet Roder, Benedikt
author_role author
dc.contributor.advisor.fl_str_mv Morán Cárdenas, Antonio Manuel
dc.contributor.author.fl_str_mv Roder, Benedikt
dc.subject.es_ES.fl_str_mv Vehículos--Control automático
Aprendizaje automático (Inteligencia artificial)
Controladores programables--Redes neuronales
topic Vehículos--Control automático
Aprendizaje automático (Inteligencia artificial)
Controladores programables--Redes neuronales
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description The field of autonomous driving has been evolving rapidly within the last few years and a lot of research has been dedicated towards the control of autonomous vehicles, especially car-like ones. Due to the recent successes of artificial intelligence techniques, even more complex problems can be solved, such as the control of autonomous multibody vehicles. Multibody vehicles can accomplish transportation tasks in a faster and cheaper way compared to multiple individual mobile vehicles or robots. But even for a human, driving a truck-trailer is a challenging task. This is because of the complex structure of the vehicle and the maneuvers that it has to perform, such as reverse parking to a loading dock. In addition, the detailed technical solution for an autonomous truck is challenging and even though many single-domain solutions are available, e.g. for pathplanning, no holistic framework exists. Also, from the control point of view, designing such a controller is a high complexity problem, which makes it a widely used benchmark. In this thesis, a concept for a plurality of tasks is presented. In contrast to most of the existing literature, a holistic approach is developed which combines many stand-alone systems to one entire framework. The framework consists of a plurality of modules, such as modeling, pathplanning, training for neural networks, controlling, jack-knife avoidance, direction switching, simulation, visualization and testing. There are model-based and model-free control approaches and the system comprises various pathplanning methods and target types. It also accounts for noisy sensors and the simulation of whole environments. To achieve superior performance, several modules had to be developed, redesigned and interlinked with each other. A pathplanning module with multiple available methods optimizes the desired position by also providing an efficient implementation for trajectory following. Classical approaches, such as optimal control (LQR) and model predictive control (MPC) can safely control a truck with a given model. Machine learning based approaches, such as deep reinforcement learning, are designed, implemented, trained and tested successfully. Furthermore, the switching of the driving direction is enabled by continuous analysis of a cost function to avoid collisions and improve driving behavior. This thesis introduces a working system of all integrated modules. The system proposed can complete complex scenarios, including situations with buildings and partial trajectories. In thousands of simulations, the system using the LQR controller or the reinforcement learning agent had a success rate of >95 % in steering a truck with one trailer, even with added noise. For the development of autonomous vehicles, the implementation of AI at scale is important. This is why a digital twin of the truck-trailer is used to simulate the full system at a much higher speed than one can collect data in real life.
publishDate 2020
dc.date.created.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-03-26T21:58:49Z
dc.date.available.none.fl_str_mv 2021-03-26T21:58:49Z
dc.date.issued.fl_str_mv 2021-03-26
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/18661
url http://hdl.handle.net/20.500.12404/18661
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/d46dde28-0359-4045-9d8d-6d91ea487052/download
https://tesis.pucp.edu.pe/bitstreams/d31f7773-ee8b-4b58-979a-8925a92ef4ac/download
https://tesis.pucp.edu.pe/bitstreams/34f7172c-a356-430b-bc8b-c5e60cfa9a1a/download
https://tesis.pucp.edu.pe/bitstreams/10e28a5b-4e73-4eab-b889-39f383b9646d/download
https://tesis.pucp.edu.pe/bitstreams/86fb1aa0-1f33-4c21-9a3a-8931a5347421/download
https://tesis.pucp.edu.pe/bitstreams/f2611883-326d-4030-b6e1-b9457b55b6f5/download
bitstream.checksum.fl_str_mv 5a4ffbc01f1b5eb70a835dac0d501661
d4b23a2527b61020c5cc28855e86b066
8a4605be74aa9ea9d79846c1fba20a33
da35ca4a8736344dfc51f0e7dd7d7081
c0e4abf2de5195a21943b88ebb4f6146
c0e4abf2de5195a21943b88ebb4f6146
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839177535035801600
spelling Morán Cárdenas, Antonio ManuelRoder, Benedikt2021-03-26T21:58:49Z2021-03-26T21:58:49Z20202021-03-26http://hdl.handle.net/20.500.12404/18661The field of autonomous driving has been evolving rapidly within the last few years and a lot of research has been dedicated towards the control of autonomous vehicles, especially car-like ones. Due to the recent successes of artificial intelligence techniques, even more complex problems can be solved, such as the control of autonomous multibody vehicles. Multibody vehicles can accomplish transportation tasks in a faster and cheaper way compared to multiple individual mobile vehicles or robots. But even for a human, driving a truck-trailer is a challenging task. This is because of the complex structure of the vehicle and the maneuvers that it has to perform, such as reverse parking to a loading dock. In addition, the detailed technical solution for an autonomous truck is challenging and even though many single-domain solutions are available, e.g. for pathplanning, no holistic framework exists. Also, from the control point of view, designing such a controller is a high complexity problem, which makes it a widely used benchmark. In this thesis, a concept for a plurality of tasks is presented. In contrast to most of the existing literature, a holistic approach is developed which combines many stand-alone systems to one entire framework. The framework consists of a plurality of modules, such as modeling, pathplanning, training for neural networks, controlling, jack-knife avoidance, direction switching, simulation, visualization and testing. There are model-based and model-free control approaches and the system comprises various pathplanning methods and target types. It also accounts for noisy sensors and the simulation of whole environments. To achieve superior performance, several modules had to be developed, redesigned and interlinked with each other. A pathplanning module with multiple available methods optimizes the desired position by also providing an efficient implementation for trajectory following. Classical approaches, such as optimal control (LQR) and model predictive control (MPC) can safely control a truck with a given model. Machine learning based approaches, such as deep reinforcement learning, are designed, implemented, trained and tested successfully. Furthermore, the switching of the driving direction is enabled by continuous analysis of a cost function to avoid collisions and improve driving behavior. This thesis introduces a working system of all integrated modules. The system proposed can complete complex scenarios, including situations with buildings and partial trajectories. In thousands of simulations, the system using the LQR controller or the reinforcement learning agent had a success rate of >95 % in steering a truck with one trailer, even with added noise. For the development of autonomous vehicles, the implementation of AI at scale is important. This is why a digital twin of the truck-trailer is used to simulate the full system at a much higher speed than one can collect data in real life.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Vehículos--Control automáticoAprendizaje automático (Inteligencia artificial)Controladores programables--Redes neuronaleshttps://purl.org/pe-repo/ocde/ford#2.02.03Control of autonomous multibody vehicles using artificial intelligenceinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Ingeniería de Control y AutomatizaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería de Control y Automatización10573987https://orcid.org/0000-0001-9059-1446CH9W284C8712037Li, PuMoran Cárdenas, Antonio ManuelEnciso Salas, Luis Miguelhttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://tesis.pucp.edu.pe/bitstreams/d46dde28-0359-4045-9d8d-6d91ea487052/download5a4ffbc01f1b5eb70a835dac0d501661MD52falseAnonymousREADORIGINALRODER_BENEDIKT_CONTROL_AUTONOMOUS_MULTIBODY.pdfRODER_BENEDIKT_CONTROL_AUTONOMOUS_MULTIBODY.pdfTexto completoapplication/pdf4196312https://tesis.pucp.edu.pe/bitstreams/d31f7773-ee8b-4b58-979a-8925a92ef4ac/downloadd4b23a2527b61020c5cc28855e86b066MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/34f7172c-a356-430b-bc8b-c5e60cfa9a1a/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILRODER_BENEDIKT_CONTROL_AUTONOMOUS_MULTIBODY.pdf.jpgRODER_BENEDIKT_CONTROL_AUTONOMOUS_MULTIBODY.pdf.jpgIM Thumbnailimage/jpeg24824https://tesis.pucp.edu.pe/bitstreams/10e28a5b-4e73-4eab-b889-39f383b9646d/downloadda35ca4a8736344dfc51f0e7dd7d7081MD54falseAnonymousREADTEXTRODER_BENEDIKT_CONTROL_AUTONOMOUS_MULTIBODY.pdf.txtRODER_BENEDIKT_CONTROL_AUTONOMOUS_MULTIBODY.pdf.txtExtracted texttext/plain208685https://tesis.pucp.edu.pe/bitstreams/86fb1aa0-1f33-4c21-9a3a-8931a5347421/downloadc0e4abf2de5195a21943b88ebb4f6146MD55falseAnonymousREADTEXTRODER_BENEDIKT_CONTROL_AUTONOMOUS_MULTIBODY.pdf.txtRODER_BENEDIKT_CONTROL_AUTONOMOUS_MULTIBODY.pdf.txtExtracted texttext/plain208685https://tesis.pucp.edu.pe/bitstreams/f2611883-326d-4030-b6e1-b9457b55b6f5/downloadc0e4abf2de5195a21943b88ebb4f6146MD55falseAnonymousREAD20.500.12404/18661oai:tesis.pucp.edu.pe:20.500.12404/186612025-07-18 20:17:16.446http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.459765
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).