Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru

Descripción del Articulo

In agricultural systems, soil pH and electrical conductivity (EC) are crucial chemical properties that directly affect nutrient availability and microbial activity, but the challenging environment of the Peruvian Andes has limited research on their estimation. This study aimed to develop an ensemble...

Descripción completa

Detalles Bibliográficos
Autores: Carbajal Llosa, Carlos Miguel, Barja , Antony, Pizarro Carcausto, Samuel Edwin
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2967
Enlace del recurso:http://hdl.handle.net/20.500.12955/2967
https://doi.org/10.3389/fsoil.2025.1673628
Nivel de acceso:acceso abierto
Materia:Ensemble learning
Spatial machine learning
Digital soil mapping
Soil pH
Electrical conductivity
Aprendizaje conjunto
aprendizaje automático espacial
mapeo digital del suelo
pH del suelo
conductividad eléctrica.
https://purl.org/pe-repo/ocde/ford#4.01.04
Propiedad del suelo; Soil properties; Teledetección; Remote sensing; Modelo digital de superficie; Digital Surface models; Sistema de información geográfica; Geographic information systems; Análisis espacial; Spatial analysis; Perú; Peru.
id INIA_d00fc01cabfec6c66a51e3d76c091ceb
oai_identifier_str oai:repositorio.inia.gob.pe:20.500.12955/2967
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.none.fl_str_mv Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru
title Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru
spellingShingle Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru
Carbajal Llosa, Carlos Miguel
Ensemble learning
Spatial machine learning
Digital soil mapping
Soil pH
Electrical conductivity
Aprendizaje conjunto
aprendizaje automático espacial
mapeo digital del suelo
pH del suelo
conductividad eléctrica.
https://purl.org/pe-repo/ocde/ford#4.01.04
Propiedad del suelo; Soil properties; Teledetección; Remote sensing; Modelo digital de superficie; Digital Surface models; Sistema de información geográfica; Geographic information systems; Análisis espacial; Spatial analysis; Perú; Peru.
title_short Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru
title_full Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru
title_fullStr Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru
title_full_unstemmed Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru
title_sort Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru
author Carbajal Llosa, Carlos Miguel
author_facet Carbajal Llosa, Carlos Miguel
Barja , Antony
Pizarro Carcausto, Samuel Edwin
author_role author
author2 Barja , Antony
Pizarro Carcausto, Samuel Edwin
author2_role author
author
dc.contributor.author.fl_str_mv Carbajal Llosa, Carlos Miguel
Barja , Antony
Pizarro Carcausto, Samuel Edwin
dc.subject.none.fl_str_mv Ensemble learning
Spatial machine learning
Digital soil mapping
Soil pH
Electrical conductivity
Aprendizaje conjunto
aprendizaje automático espacial
mapeo digital del suelo
pH del suelo
conductividad eléctrica.
topic Ensemble learning
Spatial machine learning
Digital soil mapping
Soil pH
Electrical conductivity
Aprendizaje conjunto
aprendizaje automático espacial
mapeo digital del suelo
pH del suelo
conductividad eléctrica.
https://purl.org/pe-repo/ocde/ford#4.01.04
Propiedad del suelo; Soil properties; Teledetección; Remote sensing; Modelo digital de superficie; Digital Surface models; Sistema de información geográfica; Geographic information systems; Análisis espacial; Spatial analysis; Perú; Peru.
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.04
dc.subject.agrovoc.none.fl_str_mv Propiedad del suelo; Soil properties; Teledetección; Remote sensing; Modelo digital de superficie; Digital Surface models; Sistema de información geográfica; Geographic information systems; Análisis espacial; Spatial analysis; Perú; Peru.
description In agricultural systems, soil pH and electrical conductivity (EC) are crucial chemical properties that directly affect nutrient availability and microbial activity, but the challenging environment of the Peruvian Andes has limited research on their estimation. This study aimed to develop an ensemble learning method to predict soil pH and EC in Andean agroecosystems using environmental predictors. By using simple and weighted averaging, we developed a heterogeneous ensemble learning approach that integrates machine learning (ML) algorithms, including Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The weighted ensemble assigns weights to models based on their predictive accuracy, measured by R² from spatial cross-validation. Spatial patterns are noticeable, and pH displays greater spatial clustering than EC. Elevation was the most important predictor in ML models for both parameters. Ensemble models significantly outperformed individual models, with the weighted ensemble achieving R² >0.93 and reducing RMSE by approximately 72%. Among standalone models, RF and XGBoost performed best for pH, while SVM performed the best for EC. ANN models were the least effective. Uncertainty analysis indicated high confidence in pH predictions but moderate to high uncertainty in EC predictions, suggesting that EC is more challenging to predict. Ensemble models with optimized weighting provide robust and accurate mapping of spatially autocorrelated soil properties. The high-confidence pH maps are reliable for soil management decisions, while EC predictions, though more uncertain, effectively identify priority areas for future sampling and investigation.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-12-30T18:16:21Z
dc.date.available.none.fl_str_mv 2025-12-30T18:16:21Z
dc.date.issued.fl_str_mv 2025-11-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Carbajal Llosa, C., Barja, A., & Pizarro Carcausto, S. (2025). Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru. Frontiers in Soil Science, 5, 1673628. https://doi.org/10.3389/fsoil.2025.1673628
dc.identifier.issn.none.fl_str_mv 2673-8619
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12955/2967
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3389/fsoil.2025.1673628
identifier_str_mv Carbajal Llosa, C., Barja, A., & Pizarro Carcausto, S. (2025). Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru. Frontiers in Soil Science, 5, 1673628. https://doi.org/10.3389/fsoil.2025.1673628
2673-8619
url http://hdl.handle.net/20.500.12955/2967
https://doi.org/10.3389/fsoil.2025.1673628
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2673-8619
dc.relation.ispartofseries.none.fl_str_mv Frontiers in Soil Science
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers Media S.A.
dc.publisher.country.none.fl_str_mv CH
publisher.none.fl_str_mv Frontiers Media S.A.
dc.source.none.fl_str_mv Instituto Nacional de Innovación Agraria
reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.none.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/e8db2896-a76e-41b5-b05b-ead233555d39/download
https://repositorio.inia.gob.pe/bitstreams/da2f4baf-7ee4-409d-8ddd-855cd29ef6ef/download
https://repositorio.inia.gob.pe/bitstreams/943cd31e-3878-4aaa-83c3-a1c983b90701/download
bitstream.checksum.fl_str_mv a1dff3722e05e29dac20fa1a97a12ccf
973e9310c43ccc48324896a48dad271a
b9c7bfb662f3cc5b2e0b52f4580f6d30
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1853625288784609280
spelling Carbajal Llosa, Carlos MiguelBarja , AntonyPizarro Carcausto, Samuel Edwin2025-12-30T18:16:21Z2025-12-30T18:16:21Z2025-11-06Carbajal Llosa, C., Barja, A., & Pizarro Carcausto, S. (2025). Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru. Frontiers in Soil Science, 5, 1673628. https://doi.org/10.3389/fsoil.2025.16736282673-8619http://hdl.handle.net/20.500.12955/2967https://doi.org/10.3389/fsoil.2025.1673628In agricultural systems, soil pH and electrical conductivity (EC) are crucial chemical properties that directly affect nutrient availability and microbial activity, but the challenging environment of the Peruvian Andes has limited research on their estimation. This study aimed to develop an ensemble learning method to predict soil pH and EC in Andean agroecosystems using environmental predictors. By using simple and weighted averaging, we developed a heterogeneous ensemble learning approach that integrates machine learning (ML) algorithms, including Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The weighted ensemble assigns weights to models based on their predictive accuracy, measured by R² from spatial cross-validation. Spatial patterns are noticeable, and pH displays greater spatial clustering than EC. Elevation was the most important predictor in ML models for both parameters. Ensemble models significantly outperformed individual models, with the weighted ensemble achieving R² >0.93 and reducing RMSE by approximately 72%. Among standalone models, RF and XGBoost performed best for pH, while SVM performed the best for EC. ANN models were the least effective. Uncertainty analysis indicated high confidence in pH predictions but moderate to high uncertainty in EC predictions, suggesting that EC is more challenging to predict. Ensemble models with optimized weighting provide robust and accurate mapping of spatially autocorrelated soil properties. The high-confidence pH maps are reliable for soil management decisions, while EC predictions, though more uncertain, effectively identify priority areas for future sampling and investigation.This research was funded by the INIA project CUI 2487112 "Mejoramiento de los servicios de investigación y transferencia tecnológica en el manejo y recuperación de suelos agrícolas degradados y aguas para riego en la pequeña y mediana agricultura en los departamentos de Lima, Áncash, San Martín, Cajamarca, Lambayeque, Junín, Ayacucho, Arequipa, Puno y Ucayali". Acknowledgments: To the personnel of the Soil, Water, and Foliars Laboratory (LABSAF) at the Santa Ana Agrarian Experimental Station (EEA).application/pdfengFrontiers Media S.A.CHurn:issn:2673-8619Frontiers in Soil Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAEnsemble learningSpatial machine learningDigital soil mappingSoil pHElectrical conductivityAprendizaje conjuntoaprendizaje automático espacialmapeo digital del suelopH del sueloconductividad eléctrica.https://purl.org/pe-repo/ocde/ford#4.01.04Propiedad del suelo; Soil properties; Teledetección; Remote sensing; Modelo digital de superficie; Digital Surface models; Sistema de información geográfica; Geographic information systems; Análisis espacial; Spatial analysis; Perú; Peru.Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peruinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/e8db2896-a76e-41b5-b05b-ead233555d39/downloada1dff3722e05e29dac20fa1a97a12ccfMD51ORIGINALCarbajal_et-al_2025_ensemble learning_digital mapping_electrical conductivity.pdfCarbajal_et-al_2025_ensemble learning_digital mapping_electrical conductivity.pdfapplication/pdf9869264https://repositorio.inia.gob.pe/bitstreams/da2f4baf-7ee4-409d-8ddd-855cd29ef6ef/download973e9310c43ccc48324896a48dad271aMD51THUMBNAILCarbajal_et-al_2025_ensemble learning_digital mapping_electrical conductivity_carátula.jpgimage/jpeg21008https://repositorio.inia.gob.pe/bitstreams/943cd31e-3878-4aaa-83c3-a1c983b90701/downloadb9c7bfb662f3cc5b2e0b52f4580f6d30MD5220.500.12955/2967oai:repositorio.inia.gob.pe:20.500.12955/29672025-12-31 14:12:43.198https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg==
score 13.905324
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).