Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru
Descripción del Articulo
In agricultural systems, soil pH and electrical conductivity (EC) are crucial chemical properties that directly affect nutrient availability and microbial activity, but the challenging environment of the Peruvian Andes has limited research on their estimation. This study aimed to develop an ensemble...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.inia.gob.pe:20.500.12955/2967 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12955/2967 https://doi.org/10.3389/fsoil.2025.1673628 |
| Nivel de acceso: | acceso abierto |
| Materia: | Ensemble learning Spatial machine learning Digital soil mapping Soil pH Electrical conductivity Aprendizaje conjunto aprendizaje automático espacial mapeo digital del suelo pH del suelo conductividad eléctrica. https://purl.org/pe-repo/ocde/ford#4.01.04 Propiedad del suelo; Soil properties; Teledetección; Remote sensing; Modelo digital de superficie; Digital Surface models; Sistema de información geográfica; Geographic information systems; Análisis espacial; Spatial analysis; Perú; Peru. |
| id |
INIA_d00fc01cabfec6c66a51e3d76c091ceb |
|---|---|
| oai_identifier_str |
oai:repositorio.inia.gob.pe:20.500.12955/2967 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.none.fl_str_mv |
Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru |
| title |
Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru |
| spellingShingle |
Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru Carbajal Llosa, Carlos Miguel Ensemble learning Spatial machine learning Digital soil mapping Soil pH Electrical conductivity Aprendizaje conjunto aprendizaje automático espacial mapeo digital del suelo pH del suelo conductividad eléctrica. https://purl.org/pe-repo/ocde/ford#4.01.04 Propiedad del suelo; Soil properties; Teledetección; Remote sensing; Modelo digital de superficie; Digital Surface models; Sistema de información geográfica; Geographic information systems; Análisis espacial; Spatial analysis; Perú; Peru. |
| title_short |
Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru |
| title_full |
Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru |
| title_fullStr |
Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru |
| title_full_unstemmed |
Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru |
| title_sort |
Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru |
| author |
Carbajal Llosa, Carlos Miguel |
| author_facet |
Carbajal Llosa, Carlos Miguel Barja , Antony Pizarro Carcausto, Samuel Edwin |
| author_role |
author |
| author2 |
Barja , Antony Pizarro Carcausto, Samuel Edwin |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Carbajal Llosa, Carlos Miguel Barja , Antony Pizarro Carcausto, Samuel Edwin |
| dc.subject.none.fl_str_mv |
Ensemble learning Spatial machine learning Digital soil mapping Soil pH Electrical conductivity Aprendizaje conjunto aprendizaje automático espacial mapeo digital del suelo pH del suelo conductividad eléctrica. |
| topic |
Ensemble learning Spatial machine learning Digital soil mapping Soil pH Electrical conductivity Aprendizaje conjunto aprendizaje automático espacial mapeo digital del suelo pH del suelo conductividad eléctrica. https://purl.org/pe-repo/ocde/ford#4.01.04 Propiedad del suelo; Soil properties; Teledetección; Remote sensing; Modelo digital de superficie; Digital Surface models; Sistema de información geográfica; Geographic information systems; Análisis espacial; Spatial analysis; Perú; Peru. |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.04 |
| dc.subject.agrovoc.none.fl_str_mv |
Propiedad del suelo; Soil properties; Teledetección; Remote sensing; Modelo digital de superficie; Digital Surface models; Sistema de información geográfica; Geographic information systems; Análisis espacial; Spatial analysis; Perú; Peru. |
| description |
In agricultural systems, soil pH and electrical conductivity (EC) are crucial chemical properties that directly affect nutrient availability and microbial activity, but the challenging environment of the Peruvian Andes has limited research on their estimation. This study aimed to develop an ensemble learning method to predict soil pH and EC in Andean agroecosystems using environmental predictors. By using simple and weighted averaging, we developed a heterogeneous ensemble learning approach that integrates machine learning (ML) algorithms, including Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The weighted ensemble assigns weights to models based on their predictive accuracy, measured by R² from spatial cross-validation. Spatial patterns are noticeable, and pH displays greater spatial clustering than EC. Elevation was the most important predictor in ML models for both parameters. Ensemble models significantly outperformed individual models, with the weighted ensemble achieving R² >0.93 and reducing RMSE by approximately 72%. Among standalone models, RF and XGBoost performed best for pH, while SVM performed the best for EC. ANN models were the least effective. Uncertainty analysis indicated high confidence in pH predictions but moderate to high uncertainty in EC predictions, suggesting that EC is more challenging to predict. Ensemble models with optimized weighting provide robust and accurate mapping of spatially autocorrelated soil properties. The high-confidence pH maps are reliable for soil management decisions, while EC predictions, though more uncertain, effectively identify priority areas for future sampling and investigation. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-12-30T18:16:21Z |
| dc.date.available.none.fl_str_mv |
2025-12-30T18:16:21Z |
| dc.date.issued.fl_str_mv |
2025-11-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.none.fl_str_mv |
Carbajal Llosa, C., Barja, A., & Pizarro Carcausto, S. (2025). Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru. Frontiers in Soil Science, 5, 1673628. https://doi.org/10.3389/fsoil.2025.1673628 |
| dc.identifier.issn.none.fl_str_mv |
2673-8619 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12955/2967 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3389/fsoil.2025.1673628 |
| identifier_str_mv |
Carbajal Llosa, C., Barja, A., & Pizarro Carcausto, S. (2025). Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru. Frontiers in Soil Science, 5, 1673628. https://doi.org/10.3389/fsoil.2025.1673628 2673-8619 |
| url |
http://hdl.handle.net/20.500.12955/2967 https://doi.org/10.3389/fsoil.2025.1673628 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:2673-8619 |
| dc.relation.ispartofseries.none.fl_str_mv |
Frontiers in Soil Science |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Frontiers Media S.A. |
| dc.publisher.country.none.fl_str_mv |
CH |
| publisher.none.fl_str_mv |
Frontiers Media S.A. |
| dc.source.none.fl_str_mv |
Instituto Nacional de Innovación Agraria reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.none.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/e8db2896-a76e-41b5-b05b-ead233555d39/download https://repositorio.inia.gob.pe/bitstreams/da2f4baf-7ee4-409d-8ddd-855cd29ef6ef/download https://repositorio.inia.gob.pe/bitstreams/943cd31e-3878-4aaa-83c3-a1c983b90701/download |
| bitstream.checksum.fl_str_mv |
a1dff3722e05e29dac20fa1a97a12ccf 973e9310c43ccc48324896a48dad271a b9c7bfb662f3cc5b2e0b52f4580f6d30 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1853625288784609280 |
| spelling |
Carbajal Llosa, Carlos MiguelBarja , AntonyPizarro Carcausto, Samuel Edwin2025-12-30T18:16:21Z2025-12-30T18:16:21Z2025-11-06Carbajal Llosa, C., Barja, A., & Pizarro Carcausto, S. (2025). Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peru. Frontiers in Soil Science, 5, 1673628. https://doi.org/10.3389/fsoil.2025.16736282673-8619http://hdl.handle.net/20.500.12955/2967https://doi.org/10.3389/fsoil.2025.1673628In agricultural systems, soil pH and electrical conductivity (EC) are crucial chemical properties that directly affect nutrient availability and microbial activity, but the challenging environment of the Peruvian Andes has limited research on their estimation. This study aimed to develop an ensemble learning method to predict soil pH and EC in Andean agroecosystems using environmental predictors. By using simple and weighted averaging, we developed a heterogeneous ensemble learning approach that integrates machine learning (ML) algorithms, including Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The weighted ensemble assigns weights to models based on their predictive accuracy, measured by R² from spatial cross-validation. Spatial patterns are noticeable, and pH displays greater spatial clustering than EC. Elevation was the most important predictor in ML models for both parameters. Ensemble models significantly outperformed individual models, with the weighted ensemble achieving R² >0.93 and reducing RMSE by approximately 72%. Among standalone models, RF and XGBoost performed best for pH, while SVM performed the best for EC. ANN models were the least effective. Uncertainty analysis indicated high confidence in pH predictions but moderate to high uncertainty in EC predictions, suggesting that EC is more challenging to predict. Ensemble models with optimized weighting provide robust and accurate mapping of spatially autocorrelated soil properties. The high-confidence pH maps are reliable for soil management decisions, while EC predictions, though more uncertain, effectively identify priority areas for future sampling and investigation.This research was funded by the INIA project CUI 2487112 "Mejoramiento de los servicios de investigación y transferencia tecnológica en el manejo y recuperación de suelos agrícolas degradados y aguas para riego en la pequeña y mediana agricultura en los departamentos de Lima, Áncash, San Martín, Cajamarca, Lambayeque, Junín, Ayacucho, Arequipa, Puno y Ucayali". Acknowledgments: To the personnel of the Soil, Water, and Foliars Laboratory (LABSAF) at the Santa Ana Agrarian Experimental Station (EEA).application/pdfengFrontiers Media S.A.CHurn:issn:2673-8619Frontiers in Soil Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIAEnsemble learningSpatial machine learningDigital soil mappingSoil pHElectrical conductivityAprendizaje conjuntoaprendizaje automático espacialmapeo digital del suelopH del sueloconductividad eléctrica.https://purl.org/pe-repo/ocde/ford#4.01.04Propiedad del suelo; Soil properties; Teledetección; Remote sensing; Modelo digital de superficie; Digital Surface models; Sistema de información geográfica; Geographic information systems; Análisis espacial; Spatial analysis; Perú; Peru.Ensemble machine learning for digital mapping of soil pH and electrical conductivity in the Andean agroecosystem of Peruinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/e8db2896-a76e-41b5-b05b-ead233555d39/downloada1dff3722e05e29dac20fa1a97a12ccfMD51ORIGINALCarbajal_et-al_2025_ensemble learning_digital mapping_electrical conductivity.pdfCarbajal_et-al_2025_ensemble learning_digital mapping_electrical conductivity.pdfapplication/pdf9869264https://repositorio.inia.gob.pe/bitstreams/da2f4baf-7ee4-409d-8ddd-855cd29ef6ef/download973e9310c43ccc48324896a48dad271aMD51THUMBNAILCarbajal_et-al_2025_ensemble learning_digital mapping_electrical conductivity_carátula.jpgimage/jpeg21008https://repositorio.inia.gob.pe/bitstreams/943cd31e-3878-4aaa-83c3-a1c983b90701/downloadb9c7bfb662f3cc5b2e0b52f4580f6d30MD5220.500.12955/2967oai:repositorio.inia.gob.pe:20.500.12955/29672025-12-31 14:12:43.198https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg== |
| score |
13.905324 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).