Study of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover types

Descripción del Articulo

The high-Andean vegetation ecosystems of the Bombón Plateau in Peru face increasing degradation due to aggressive anthropogenic land use and the climate change scenario. The lack of historical degradation evolution information makes implementing adaptive monitoring plans in these vulnerable ecosyste...

Descripción completa

Detalles Bibliográficos
Autores: Cano, Deyvis, Pizarro Carcausto, Samuel Edwin, Cacciuttolo, Carlos, Peñaloza, Richard, Yaranga Cano, Raul Marino, Gandini, Marcelo Luciano
Formato: artículo
Fecha de Publicación:2023
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2394
Enlace del recurso:https://hdl.handle.net/20.500.12955/2394
https://doi.org/10.3390/su152115472
Nivel de acceso:acceso abierto
Materia:Degradation
High-Andean vegetation
ARVI
Mann–Kendall
Landsat 5, 7 and 8
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.05.00
Degradación forestal
Imagery
Imágenes
Teledetección
id INIA_ca0937b08ec74a8f19b8b687e00a88ac
oai_identifier_str oai:repositorio.inia.gob.pe:20.500.12955/2394
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Study of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover types
title Study of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover types
spellingShingle Study of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover types
Cano, Deyvis
Degradation
High-Andean vegetation
ARVI
Mann–Kendall
Landsat 5, 7 and 8
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.05.00
Degradation
Degradación forestal
Imagery
Imágenes
Remote sensing
Teledetección
title_short Study of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover types
title_full Study of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover types
title_fullStr Study of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover types
title_full_unstemmed Study of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover types
title_sort Study of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover types
author Cano, Deyvis
author_facet Cano, Deyvis
Pizarro Carcausto, Samuel Edwin
Cacciuttolo, Carlos
Peñaloza, Richard
Yaranga Cano, Raul Marino
Gandini, Marcelo Luciano
author_role author
author2 Pizarro Carcausto, Samuel Edwin
Cacciuttolo, Carlos
Peñaloza, Richard
Yaranga Cano, Raul Marino
Gandini, Marcelo Luciano
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Cano, Deyvis
Pizarro Carcausto, Samuel Edwin
Cacciuttolo, Carlos
Peñaloza, Richard
Yaranga Cano, Raul Marino
Gandini, Marcelo Luciano
dc.subject.es_PE.fl_str_mv Degradation
High-Andean vegetation
ARVI
Mann–Kendall
Landsat 5, 7 and 8
Remote sensing
topic Degradation
High-Andean vegetation
ARVI
Mann–Kendall
Landsat 5, 7 and 8
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.05.00
Degradation
Degradación forestal
Imagery
Imágenes
Remote sensing
Teledetección
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.05.00
dc.subject.agrovoc.es_PE.fl_str_mv Degradation
Degradación forestal
Imagery
Imágenes
Remote sensing
Teledetección
description The high-Andean vegetation ecosystems of the Bombón Plateau in Peru face increasing degradation due to aggressive anthropogenic land use and the climate change scenario. The lack of historical degradation evolution information makes implementing adaptive monitoring plans in these vulnerable ecosystems difficult. Remote sensor technology emerges as a fundamental resource to fill this gap. The objective of this article was to analyze the degradation of vegetation in the Bombón Plateau over almost four decades (1985–2022), using high spatiotemporal resolution data from the Landsat 5, 7, and 8 sensors. The methodology considers: (i) the use of the atmosphere resistant vegetation index (ARVI), (ii) the implementation of non-parametric Mann–Kendall trend analysis per pixel, and (iii) the affected vegetation covers were determined by supervised classification. This article’s results show that approximately 13.4% of the total vegetation cover was degraded. According to vegetation cover types, bulrush was degraded by 21%, tall grass by 18%, cattails by 16%, wetlands by 14%, and puna grass by 13%. The Spearman correlation (p < 0.01) determined that degraded covers are replaced by puna grass and change factors linked with human activities. Finally, this article concludes that part of the vegetation degradation is related to anthropogenic activities such as agriculture, overgrazing, urbanization, and mining. However, the possibility that environmental factors have influenced these events is recognized.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-04T22:09:05Z
dc.date.available.none.fl_str_mv 2023-12-04T22:09:05Z
dc.date.issued.fl_str_mv 2023-10-31
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Cano, D.; Pizarro, S.; Cacciuttolo, C.; Peñaloza, R.; Yaranga, R.; & Gandini, M. L. (2023). Study of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover types. Sustainability, 15(21), 15472. doi: 10.3390/su152115472
dc.identifier.issn.none.fl_str_mv 2071-1050
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2394
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/su152115472
identifier_str_mv Cano, D.; Pizarro, S.; Cacciuttolo, C.; Peñaloza, R.; Yaranga, R.; & Gandini, M. L. (2023). Study of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover types. Sustainability, 15(21), 15472. doi: 10.3390/su152115472
2071-1050
url https://hdl.handle.net/20.500.12955/2394
https://doi.org/10.3390/su152115472
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_PE.fl_str_mv urn:issn:2071-1050
dc.relation.ispartofseries.es_PE.fl_str_mv Sustainability
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.es_PE.fl_str_mv CH
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/caf052be-3142-49cd-9309-e26a2ef6fe4b/download
https://repositorio.inia.gob.pe/bitstreams/77a3d15e-a86f-4a23-b2be-2edd367f40c0/download
https://repositorio.inia.gob.pe/bitstreams/f939bc51-025b-4773-bb22-406b20330e3e/download
https://repositorio.inia.gob.pe/bitstreams/c31ce4b9-4c1a-4368-909e-f9cf80043e48/download
bitstream.checksum.fl_str_mv c76594aed6107f813f30796dbe63234e
8a4605be74aa9ea9d79846c1fba20a33
7e76717e97313c2c44b524f41a35a55e
06e825314ae686422f765ce0dd9ffe06
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1834599918988165120
spelling Cano, DeyvisPizarro Carcausto, Samuel EdwinCacciuttolo, CarlosPeñaloza, RichardYaranga Cano, Raul MarinoGandini, Marcelo Luciano2023-12-04T22:09:05Z2023-12-04T22:09:05Z2023-10-31Cano, D.; Pizarro, S.; Cacciuttolo, C.; Peñaloza, R.; Yaranga, R.; & Gandini, M. L. (2023). Study of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover types. Sustainability, 15(21), 15472. doi: 10.3390/su1521154722071-1050https://hdl.handle.net/20.500.12955/2394https://doi.org/10.3390/su152115472The high-Andean vegetation ecosystems of the Bombón Plateau in Peru face increasing degradation due to aggressive anthropogenic land use and the climate change scenario. The lack of historical degradation evolution information makes implementing adaptive monitoring plans in these vulnerable ecosystems difficult. Remote sensor technology emerges as a fundamental resource to fill this gap. The objective of this article was to analyze the degradation of vegetation in the Bombón Plateau over almost four decades (1985–2022), using high spatiotemporal resolution data from the Landsat 5, 7, and 8 sensors. The methodology considers: (i) the use of the atmosphere resistant vegetation index (ARVI), (ii) the implementation of non-parametric Mann–Kendall trend analysis per pixel, and (iii) the affected vegetation covers were determined by supervised classification. This article’s results show that approximately 13.4% of the total vegetation cover was degraded. According to vegetation cover types, bulrush was degraded by 21%, tall grass by 18%, cattails by 16%, wetlands by 14%, and puna grass by 13%. The Spearman correlation (p < 0.01) determined that degraded covers are replaced by puna grass and change factors linked with human activities. Finally, this article concludes that part of the vegetation degradation is related to anthropogenic activities such as agriculture, overgrazing, urbanization, and mining. However, the possibility that environmental factors have influenced these events is recognized.application/pdfengMDPICHurn:issn:2071-1050Sustainabilityinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIADegradationHigh-Andean vegetationARVIMann–KendallLandsat 5, 7 and 8Remote sensinghttps://purl.org/pe-repo/ocde/ford#4.05.00DegradationDegradación forestalImageryImágenesRemote sensingTeledetecciónStudy of ecosystem degradation dynamics in the Peruvian Highlands: Landsat time-series trend analysis (1985–2022) with ARVI for different vegetation cover typesinfo:eu-repo/semantics/articleORIGINALArias_et-al_2021_comparativo_alfalfa.pdfArias_et-al_2021_comparativo_alfalfa.pdfArtículo (Español)application/pdf180764https://repositorio.inia.gob.pe/bitstreams/caf052be-3142-49cd-9309-e26a2ef6fe4b/downloadc76594aed6107f813f30796dbe63234eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/77a3d15e-a86f-4a23-b2be-2edd367f40c0/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTArias_et-al_2021_comparativo_alfalfa.pdf.txtArias_et-al_2021_comparativo_alfalfa.pdf.txtExtracted texttext/plain27993https://repositorio.inia.gob.pe/bitstreams/f939bc51-025b-4773-bb22-406b20330e3e/download7e76717e97313c2c44b524f41a35a55eMD53THUMBNAILArias_et-al_2021_comparativo_alfalfa.pdf.jpgArias_et-al_2021_comparativo_alfalfa.pdf.jpgGenerated Thumbnailimage/jpeg1676https://repositorio.inia.gob.pe/bitstreams/c31ce4b9-4c1a-4368-909e-f9cf80043e48/download06e825314ae686422f765ce0dd9ffe06MD5420.500.12955/2394oai:repositorio.inia.gob.pe:20.500.12955/23942025-03-09 10:16:53.466https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.949926
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).