Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru

Descripción del Articulo

In Peru, common bean varieties adapt very well to arid zones, and it is essential to strengthen their evaluations accurately during their phenological stage by using remote sensors and UAV. However, this technology has not been widely adopted in the Peruvian agricultural system, causing a lack of in...

Descripción completa

Detalles Bibliográficos
Autores: Saravia Navarro, David, Valqui Valqui, Lamberto, Salazar Coronal, Wilian, Quille Mamani, Javier Alvaro, Barboza Castillo, Elgar, Porras Jorge, Zenaida Rossana, Injante Silva, Pedro Hugo, Arbizu Berrocal, Carlos Irvin
Formato: artículo
Fecha de Publicación:2023
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2168
Enlace del recurso:https://hdl.handle.net/20.500.12955/2168
https://doi.org/10.3390/drones7050325
Nivel de acceso:acceso abierto
Materia:Multiple regression
Multispectral imaging
NDVI
Precision agriculture
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.01.06
Multiple regression analysis
Multispectral imagery
Normalized difference vegetation index
Análisis por regresión múltiple
Imágenes multiespectrales
Indice normalizado diferencial de la vegetación
Precision agricultura
Agricultura de precisión
Teledetección
id INIA_5cff3d0c3312021677429f88357bfbd8
oai_identifier_str oai:null:20.500.12955/2168
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
title Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
spellingShingle Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
Saravia Navarro, David
Multiple regression
Multispectral imaging
NDVI
Precision agriculture
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.01.06
Multiple regression analysis
Multispectral imagery
Normalized difference vegetation index
Análisis por regresión múltiple
Imágenes multiespectrales
Indice normalizado diferencial de la vegetación
Precision agricultura
Agricultura de precisión
Teledetección
title_short Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
title_full Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
title_fullStr Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
title_full_unstemmed Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
title_sort Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
author Saravia Navarro, David
author_facet Saravia Navarro, David
Valqui Valqui, Lamberto
Salazar Coronal, Wilian
Quille Mamani, Javier Alvaro
Barboza Castillo, Elgar
Porras Jorge, Zenaida Rossana
Injante Silva, Pedro Hugo
Arbizu Berrocal, Carlos Irvin
author_role author
author2 Valqui Valqui, Lamberto
Salazar Coronal, Wilian
Quille Mamani, Javier Alvaro
Barboza Castillo, Elgar
Porras Jorge, Zenaida Rossana
Injante Silva, Pedro Hugo
Arbizu Berrocal, Carlos Irvin
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Saravia Navarro, David
Valqui Valqui, Lamberto
Salazar Coronal, Wilian
Quille Mamani, Javier Alvaro
Barboza Castillo, Elgar
Porras Jorge, Zenaida Rossana
Injante Silva, Pedro Hugo
Arbizu Berrocal, Carlos Irvin
dc.subject.en.fl_str_mv Multiple regression
Multispectral imaging
NDVI
Precision agriculture
Remote sensing
topic Multiple regression
Multispectral imaging
NDVI
Precision agriculture
Remote sensing
https://purl.org/pe-repo/ocde/ford#4.01.06
Multiple regression analysis
Multispectral imagery
Normalized difference vegetation index
Análisis por regresión múltiple
Imágenes multiespectrales
Indice normalizado diferencial de la vegetación
Precision agricultura
Agricultura de precisión
Teledetección
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.06
dc.subject.agrovoc.en.fl_str_mv Multiple regression analysis
Multispectral imagery
Normalized difference vegetation index
dc.subject.agrovoc.es_PE.fl_str_mv Análisis por regresión múltiple
Imágenes multiespectrales
Indice normalizado diferencial de la vegetación
Precision agricultura
Agricultura de precisión
Teledetección
description In Peru, common bean varieties adapt very well to arid zones, and it is essential to strengthen their evaluations accurately during their phenological stage by using remote sensors and UAV. However, this technology has not been widely adopted in the Peruvian agricultural system, causing a lack of information and precision data on this crop. Here, we predicted the yield of four beans cultivars by using multispectral images, vegetation indices (VIs) and multiple linear correlations (with 11 VIs) in 13 different periods of their phenological development. The multispectral images were analyzed with two methods: (1) a mask of only the crop canopy with supervised classification constructed with QGIS software; and (2) the grids corresponding to each plot (n = 48) without classification. The prediction models can be estimated with higher accuracy when bean plants reached maximum canopy cover (vegetative and reproductive stages), obtaining higher R2 for the c2000 cultivar (0.942) with the CIG, PCB, DVI, EVI and TVI indices with method 2. Similarly, with five VIs, the camanejo cultivar showed the highest R2 for both methods 1 and 2 (0.89 and 0.837) in the reproductive stage. The models better predicted the yield in the phenological stages V3–V4 and R6–R8 for all bean cultivars. This work demonstrated the utility of UAV tools and the use of multispectral images to predict yield before harvest under the Peruvian arid ecosystem.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-05T16:48:47Z
dc.date.available.none.fl_str_mv 2023-06-05T16:48:47Z
dc.date.issued.fl_str_mv 2023-05-19
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.en.fl_str_mv Saravia, D.; Valqui-Valqui, L.; Salazar, W.; Quille-Mamani, J.; Barboza, E.; Porras-Jorge, R.; ... & Arbizu, C. I. (2023). Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru. Drones, 7(5), 325. doi: 10.3390/drones7050325
dc.identifier.issn.none.fl_str_mv 2504-446X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2168
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/drones7050325
identifier_str_mv Saravia, D.; Valqui-Valqui, L.; Salazar, W.; Quille-Mamani, J.; Barboza, E.; Porras-Jorge, R.; ... & Arbizu, C. I. (2023). Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru. Drones, 7(5), 325. doi: 10.3390/drones7050325
2504-446X
url https://hdl.handle.net/20.500.12955/2168
https://doi.org/10.3390/drones7050325
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2504-446X
dc.relation.ispartofseries.en.fl_str_mv Drones
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.en.fl_str_mv MDPI
dc.publisher.country.none.fl_str_mv CH
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/5b23f505-78f5-4d12-89c0-d4757b8897ce/download
https://repositorio.inia.gob.pe/bitstreams/203c8c57-9a25-427d-958c-278b73d1351f/download
https://repositorio.inia.gob.pe/bitstreams/d776656e-bfef-4931-b91c-11c433e42aea/download
https://repositorio.inia.gob.pe/bitstreams/7c6e291e-0443-4237-a0bc-276c601c2b2c/download
bitstream.checksum.fl_str_mv fbef5aaca2fb47ef892663d036b7820a
8a4605be74aa9ea9d79846c1fba20a33
54d48e0728866c4cd66f0b86aeb48519
94ea7e613ffa3ec5278d9f75a888b029
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331734851092480
spelling Saravia Navarro, DavidValqui Valqui, LambertoSalazar Coronal, WilianQuille Mamani, Javier AlvaroBarboza Castillo, ElgarPorras Jorge, Zenaida RossanaInjante Silva, Pedro HugoArbizu Berrocal, Carlos Irvin2023-06-05T16:48:47Z2023-06-05T16:48:47Z2023-05-19Saravia, D.; Valqui-Valqui, L.; Salazar, W.; Quille-Mamani, J.; Barboza, E.; Porras-Jorge, R.; ... & Arbizu, C. I. (2023). Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru. Drones, 7(5), 325. doi: 10.3390/drones70503252504-446Xhttps://hdl.handle.net/20.500.12955/2168https://doi.org/10.3390/drones7050325In Peru, common bean varieties adapt very well to arid zones, and it is essential to strengthen their evaluations accurately during their phenological stage by using remote sensors and UAV. However, this technology has not been widely adopted in the Peruvian agricultural system, causing a lack of information and precision data on this crop. Here, we predicted the yield of four beans cultivars by using multispectral images, vegetation indices (VIs) and multiple linear correlations (with 11 VIs) in 13 different periods of their phenological development. The multispectral images were analyzed with two methods: (1) a mask of only the crop canopy with supervised classification constructed with QGIS software; and (2) the grids corresponding to each plot (n = 48) without classification. The prediction models can be estimated with higher accuracy when bean plants reached maximum canopy cover (vegetative and reproductive stages), obtaining higher R2 for the c2000 cultivar (0.942) with the CIG, PCB, DVI, EVI and TVI indices with method 2. Similarly, with five VIs, the camanejo cultivar showed the highest R2 for both methods 1 and 2 (0.89 and 0.837) in the reproductive stage. The models better predicted the yield in the phenological stages V3–V4 and R6–R8 for all bean cultivars. This work demonstrated the utility of UAV tools and the use of multispectral images to predict yield before harvest under the Peruvian arid ecosystem.application/pdfengMDPICHurn:issn:2504-446XDronesinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAMultiple regressionMultispectral imagingNDVIPrecision agricultureRemote sensinghttps://purl.org/pe-repo/ocde/ford#4.01.06Multiple regression analysisMultispectral imageryNormalized difference vegetation indexAnálisis por regresión múltipleImágenes multiespectralesIndice normalizado diferencial de la vegetaciónPrecision agriculturaAgricultura de precisiónTeledetecciónYield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peruinfo:eu-repo/semantics/article7ORIGINALSaravia_et-al_bean_multisprectal.pdfSaravia_et-al_bean_multisprectal.pdfArticle (English)application/pdf6888859https://repositorio.inia.gob.pe/bitstreams/5b23f505-78f5-4d12-89c0-d4757b8897ce/downloadfbef5aaca2fb47ef892663d036b7820aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/203c8c57-9a25-427d-958c-278b73d1351f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSaravia_et-al_bean_multisprectal.pdf.txtSaravia_et-al_bean_multisprectal.pdf.txtExtracted texttext/plain63897https://repositorio.inia.gob.pe/bitstreams/d776656e-bfef-4931-b91c-11c433e42aea/download54d48e0728866c4cd66f0b86aeb48519MD53THUMBNAILSaravia_et-al_bean_multisprectal.pdf.jpgSaravia_et-al_bean_multisprectal.pdf.jpgGenerated Thumbnailimage/jpeg1644https://repositorio.inia.gob.pe/bitstreams/7c6e291e-0443-4237-a0bc-276c601c2b2c/download94ea7e613ffa3ec5278d9f75a888b029MD5420.500.12955/2168oai:repositorio.inia.gob.pe:20.500.12955/21682023-08-22 12:42:06.682https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.971837
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).