Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru
Descripción del Articulo
In Peru, common bean varieties adapt very well to arid zones, and it is essential to strengthen their evaluations accurately during their phenological stage by using remote sensors and UAV. However, this technology has not been widely adopted in the Peruvian agricultural system, causing a lack of in...
Autores: | , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Instituto Nacional de Innovación Agraria |
Repositorio: | INIA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:null:20.500.12955/2168 |
Enlace del recurso: | https://hdl.handle.net/20.500.12955/2168 https://doi.org/10.3390/drones7050325 |
Nivel de acceso: | acceso abierto |
Materia: | Multiple regression Multispectral imaging NDVI Precision agriculture Remote sensing https://purl.org/pe-repo/ocde/ford#4.01.06 Multiple regression analysis Multispectral imagery Normalized difference vegetation index Análisis por regresión múltiple Imágenes multiespectrales Indice normalizado diferencial de la vegetación Precision agricultura Agricultura de precisión Teledetección |
id |
INIA_5cff3d0c3312021677429f88357bfbd8 |
---|---|
oai_identifier_str |
oai:null:20.500.12955/2168 |
network_acronym_str |
INIA |
network_name_str |
INIA-Institucional |
repository_id_str |
4830 |
dc.title.es_PE.fl_str_mv |
Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru |
title |
Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru |
spellingShingle |
Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru Saravia Navarro, David Multiple regression Multispectral imaging NDVI Precision agriculture Remote sensing https://purl.org/pe-repo/ocde/ford#4.01.06 Multiple regression analysis Multispectral imagery Normalized difference vegetation index Análisis por regresión múltiple Imágenes multiespectrales Indice normalizado diferencial de la vegetación Precision agricultura Agricultura de precisión Teledetección |
title_short |
Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru |
title_full |
Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru |
title_fullStr |
Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru |
title_full_unstemmed |
Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru |
title_sort |
Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru |
author |
Saravia Navarro, David |
author_facet |
Saravia Navarro, David Valqui Valqui, Lamberto Salazar Coronal, Wilian Quille Mamani, Javier Alvaro Barboza Castillo, Elgar Porras Jorge, Zenaida Rossana Injante Silva, Pedro Hugo Arbizu Berrocal, Carlos Irvin |
author_role |
author |
author2 |
Valqui Valqui, Lamberto Salazar Coronal, Wilian Quille Mamani, Javier Alvaro Barboza Castillo, Elgar Porras Jorge, Zenaida Rossana Injante Silva, Pedro Hugo Arbizu Berrocal, Carlos Irvin |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Saravia Navarro, David Valqui Valqui, Lamberto Salazar Coronal, Wilian Quille Mamani, Javier Alvaro Barboza Castillo, Elgar Porras Jorge, Zenaida Rossana Injante Silva, Pedro Hugo Arbizu Berrocal, Carlos Irvin |
dc.subject.en.fl_str_mv |
Multiple regression Multispectral imaging NDVI Precision agriculture Remote sensing |
topic |
Multiple regression Multispectral imaging NDVI Precision agriculture Remote sensing https://purl.org/pe-repo/ocde/ford#4.01.06 Multiple regression analysis Multispectral imagery Normalized difference vegetation index Análisis por regresión múltiple Imágenes multiespectrales Indice normalizado diferencial de la vegetación Precision agricultura Agricultura de precisión Teledetección |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.06 |
dc.subject.agrovoc.en.fl_str_mv |
Multiple regression analysis Multispectral imagery Normalized difference vegetation index |
dc.subject.agrovoc.es_PE.fl_str_mv |
Análisis por regresión múltiple Imágenes multiespectrales Indice normalizado diferencial de la vegetación Precision agricultura Agricultura de precisión Teledetección |
description |
In Peru, common bean varieties adapt very well to arid zones, and it is essential to strengthen their evaluations accurately during their phenological stage by using remote sensors and UAV. However, this technology has not been widely adopted in the Peruvian agricultural system, causing a lack of information and precision data on this crop. Here, we predicted the yield of four beans cultivars by using multispectral images, vegetation indices (VIs) and multiple linear correlations (with 11 VIs) in 13 different periods of their phenological development. The multispectral images were analyzed with two methods: (1) a mask of only the crop canopy with supervised classification constructed with QGIS software; and (2) the grids corresponding to each plot (n = 48) without classification. The prediction models can be estimated with higher accuracy when bean plants reached maximum canopy cover (vegetative and reproductive stages), obtaining higher R2 for the c2000 cultivar (0.942) with the CIG, PCB, DVI, EVI and TVI indices with method 2. Similarly, with five VIs, the camanejo cultivar showed the highest R2 for both methods 1 and 2 (0.89 and 0.837) in the reproductive stage. The models better predicted the yield in the phenological stages V3–V4 and R6–R8 for all bean cultivars. This work demonstrated the utility of UAV tools and the use of multispectral images to predict yield before harvest under the Peruvian arid ecosystem. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-06-05T16:48:47Z |
dc.date.available.none.fl_str_mv |
2023-06-05T16:48:47Z |
dc.date.issued.fl_str_mv |
2023-05-19 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.en.fl_str_mv |
Saravia, D.; Valqui-Valqui, L.; Salazar, W.; Quille-Mamani, J.; Barboza, E.; Porras-Jorge, R.; ... & Arbizu, C. I. (2023). Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru. Drones, 7(5), 325. doi: 10.3390/drones7050325 |
dc.identifier.issn.none.fl_str_mv |
2504-446X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2168 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/drones7050325 |
identifier_str_mv |
Saravia, D.; Valqui-Valqui, L.; Salazar, W.; Quille-Mamani, J.; Barboza, E.; Porras-Jorge, R.; ... & Arbizu, C. I. (2023). Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru. Drones, 7(5), 325. doi: 10.3390/drones7050325 2504-446X |
url |
https://hdl.handle.net/20.500.12955/2168 https://doi.org/10.3390/drones7050325 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2504-446X |
dc.relation.ispartofseries.en.fl_str_mv |
Drones |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.en.fl_str_mv |
MDPI |
dc.publisher.country.none.fl_str_mv |
CH |
dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
instname_str |
Instituto Nacional de Innovación Agraria |
instacron_str |
INIA |
institution |
INIA |
reponame_str |
INIA-Institucional |
collection |
INIA-Institucional |
dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/5b23f505-78f5-4d12-89c0-d4757b8897ce/download https://repositorio.inia.gob.pe/bitstreams/203c8c57-9a25-427d-958c-278b73d1351f/download https://repositorio.inia.gob.pe/bitstreams/d776656e-bfef-4931-b91c-11c433e42aea/download https://repositorio.inia.gob.pe/bitstreams/7c6e291e-0443-4237-a0bc-276c601c2b2c/download |
bitstream.checksum.fl_str_mv |
fbef5aaca2fb47ef892663d036b7820a 8a4605be74aa9ea9d79846c1fba20a33 54d48e0728866c4cd66f0b86aeb48519 94ea7e613ffa3ec5278d9f75a888b029 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional INIA |
repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
_version_ |
1833331734851092480 |
spelling |
Saravia Navarro, DavidValqui Valqui, LambertoSalazar Coronal, WilianQuille Mamani, Javier AlvaroBarboza Castillo, ElgarPorras Jorge, Zenaida RossanaInjante Silva, Pedro HugoArbizu Berrocal, Carlos Irvin2023-06-05T16:48:47Z2023-06-05T16:48:47Z2023-05-19Saravia, D.; Valqui-Valqui, L.; Salazar, W.; Quille-Mamani, J.; Barboza, E.; Porras-Jorge, R.; ... & Arbizu, C. I. (2023). Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru. Drones, 7(5), 325. doi: 10.3390/drones70503252504-446Xhttps://hdl.handle.net/20.500.12955/2168https://doi.org/10.3390/drones7050325In Peru, common bean varieties adapt very well to arid zones, and it is essential to strengthen their evaluations accurately during their phenological stage by using remote sensors and UAV. However, this technology has not been widely adopted in the Peruvian agricultural system, causing a lack of information and precision data on this crop. Here, we predicted the yield of four beans cultivars by using multispectral images, vegetation indices (VIs) and multiple linear correlations (with 11 VIs) in 13 different periods of their phenological development. The multispectral images were analyzed with two methods: (1) a mask of only the crop canopy with supervised classification constructed with QGIS software; and (2) the grids corresponding to each plot (n = 48) without classification. The prediction models can be estimated with higher accuracy when bean plants reached maximum canopy cover (vegetative and reproductive stages), obtaining higher R2 for the c2000 cultivar (0.942) with the CIG, PCB, DVI, EVI and TVI indices with method 2. Similarly, with five VIs, the camanejo cultivar showed the highest R2 for both methods 1 and 2 (0.89 and 0.837) in the reproductive stage. The models better predicted the yield in the phenological stages V3–V4 and R6–R8 for all bean cultivars. This work demonstrated the utility of UAV tools and the use of multispectral images to predict yield before harvest under the Peruvian arid ecosystem.application/pdfengMDPICHurn:issn:2504-446XDronesinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAMultiple regressionMultispectral imagingNDVIPrecision agricultureRemote sensinghttps://purl.org/pe-repo/ocde/ford#4.01.06Multiple regression analysisMultispectral imageryNormalized difference vegetation indexAnálisis por regresión múltipleImágenes multiespectralesIndice normalizado diferencial de la vegetaciónPrecision agriculturaAgricultura de precisiónTeledetecciónYield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peruinfo:eu-repo/semantics/article7ORIGINALSaravia_et-al_bean_multisprectal.pdfSaravia_et-al_bean_multisprectal.pdfArticle (English)application/pdf6888859https://repositorio.inia.gob.pe/bitstreams/5b23f505-78f5-4d12-89c0-d4757b8897ce/downloadfbef5aaca2fb47ef892663d036b7820aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/203c8c57-9a25-427d-958c-278b73d1351f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSaravia_et-al_bean_multisprectal.pdf.txtSaravia_et-al_bean_multisprectal.pdf.txtExtracted texttext/plain63897https://repositorio.inia.gob.pe/bitstreams/d776656e-bfef-4931-b91c-11c433e42aea/download54d48e0728866c4cd66f0b86aeb48519MD53THUMBNAILSaravia_et-al_bean_multisprectal.pdf.jpgSaravia_et-al_bean_multisprectal.pdf.jpgGenerated Thumbnailimage/jpeg1644https://repositorio.inia.gob.pe/bitstreams/7c6e291e-0443-4237-a0bc-276c601c2b2c/download94ea7e613ffa3ec5278d9f75a888b029MD5420.500.12955/2168oai:repositorio.inia.gob.pe:20.500.12955/21682023-08-22 12:42:06.682https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.971837 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).