Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence
Descripción del Articulo
Peruvian Amazonian rainforests are constantly threatened by forest loss. Understanding changes in forest cover and assessing the level of risk is a permanent concern for numerous scientists and forest authorities. There are many conservation programs for Peruvian forests that involve collaborative e...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Instituto Nacional de Innovación Agraria |
Repositorio: | INIA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:null:20.500.12955/2293 |
Enlace del recurso: | https://hdl.handle.net/20.500.12955/2293 https://doi.org/10.1016/j.tfp.2023.100440 |
Nivel de acceso: | acceso abierto |
Materia: | Kohonen neural network Forest conservation Forest prevention https://purl.org/pe-repo/ocde/ford#4.01.02 Conservación de montes Forest protection Protección forestal Artificial intelligence Inteligencia artificial |
id |
INIA_2c32cab10744f72e6135a3ee518c0329 |
---|---|
oai_identifier_str |
oai:null:20.500.12955/2293 |
network_acronym_str |
INIA |
network_name_str |
INIA-Institucional |
repository_id_str |
4830 |
dc.title.es_PE.fl_str_mv |
Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence |
title |
Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence |
spellingShingle |
Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence Goycochea Casas, Gianmarco Kohonen neural network Forest conservation Forest prevention Forest prevention https://purl.org/pe-repo/ocde/ford#4.01.02 Forest conservation Conservación de montes Forest protection Protección forestal Artificial intelligence Inteligencia artificial |
title_short |
Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence |
title_full |
Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence |
title_fullStr |
Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence |
title_full_unstemmed |
Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence |
title_sort |
Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence |
author |
Goycochea Casas, Gianmarco |
author_facet |
Goycochea Casas, Gianmarco Baselly Villanueva, Juan Rodrigo Coimbra Limeira, Mathaus Messias Eleto Torres, Carlos Moreira Miquelino Garcia Leite, Hélio |
author_role |
author |
author2 |
Baselly Villanueva, Juan Rodrigo Coimbra Limeira, Mathaus Messias Eleto Torres, Carlos Moreira Miquelino Garcia Leite, Hélio |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Goycochea Casas, Gianmarco Baselly Villanueva, Juan Rodrigo Coimbra Limeira, Mathaus Messias Eleto Torres, Carlos Moreira Miquelino Garcia Leite, Hélio |
dc.subject.es_PE.fl_str_mv |
Kohonen neural network Forest conservation Forest prevention Forest prevention |
topic |
Kohonen neural network Forest conservation Forest prevention Forest prevention https://purl.org/pe-repo/ocde/ford#4.01.02 Forest conservation Conservación de montes Forest protection Protección forestal Artificial intelligence Inteligencia artificial |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.02 |
dc.subject.agrovoc.es_PE.fl_str_mv |
Forest conservation Conservación de montes Forest protection Protección forestal Artificial intelligence Inteligencia artificial |
description |
Peruvian Amazonian rainforests are constantly threatened by forest loss. Understanding changes in forest cover and assessing the level of risk is a permanent concern for numerous scientists and forest authorities. There are many conservation programs for Peruvian forests that involve collaborative efforts and employ diverse methodologies for forest monitoring. In this study, we propose an alternative approach to decision-making for forest preservation, aiming to classify the risk of forest loss in districts within the Peruvian Amazon rainforest. This classification enables sustainable forest management. To accomplish this, we utilized unsupervised learning artificial intelligence through Kohonen's neural network. The network was trained using a historical database spanning from 2001 to 2021, which includes variables such as forest cover and loss, climate, topography, hydrographic networks, and timber forest concessions. Through this approach, the network successfully established five clusters. Following preliminary analysis, we designated these clusters as: low, medium, high, very high, and extremely high risk of forest loss. Kohonen networks demonstrated their effectiveness in clustering forest loss and forest cover. The results indicate a shifting trend among the classes over time, with an increase in the categories exhibiting high and very high risk of forest cover loss. This study provides valuable information for decision-making in the prevention and conservation of Peruvian forests. We strongly recommend maintaining vigilance, particularly in districts classified as a very high or extremely high risk of losing forest cover. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-02T15:49:10Z |
dc.date.available.none.fl_str_mv |
2023-10-02T15:49:10Z |
dc.date.issued.fl_str_mv |
2023-09-21 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Casas, G.; Baselly, J.; Limeira, M; Torres, C.; & Leite, H. (2023). Classifying the risk of forest loss in the Peruvian Amazon Rainforest: An alternative approach for sustainable forest management using artificial intelligence. Trees, Forests and People, 100440. doi: 10.1016/j.tfp.2023.100440 |
dc.identifier.issn.none.fl_str_mv |
2666-7193 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2293 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.tfp.2023.100440 |
identifier_str_mv |
Casas, G.; Baselly, J.; Limeira, M; Torres, C.; & Leite, H. (2023). Classifying the risk of forest loss in the Peruvian Amazon Rainforest: An alternative approach for sustainable forest management using artificial intelligence. Trees, Forests and People, 100440. doi: 10.1016/j.tfp.2023.100440 2666-7193 |
url |
https://hdl.handle.net/20.500.12955/2293 https://doi.org/10.1016/j.tfp.2023.100440 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.es_PE.fl_str_mv |
urn:issn:2666-7193 |
dc.relation.ispartofseries.es_PE.fl_str_mv |
Trees, Forests and People |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Elsevier |
dc.publisher.country.es_PE.fl_str_mv |
NL |
dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
instname_str |
Instituto Nacional de Innovación Agraria |
instacron_str |
INIA |
institution |
INIA |
reponame_str |
INIA-Institucional |
collection |
INIA-Institucional |
dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/e0ee63bd-318f-4fd2-a6ad-04a20f56e825/download https://repositorio.inia.gob.pe/bitstreams/e1bd8c8b-420b-41b8-ad23-7bbe10efe428/download https://repositorio.inia.gob.pe/bitstreams/0be9fe52-37dd-41dc-82a2-47a76944dff6/download https://repositorio.inia.gob.pe/bitstreams/1f069392-879c-4b9a-bf8b-7f9296725984/download |
bitstream.checksum.fl_str_mv |
68a5d391f8a436a77361760f52f1cade 8a4605be74aa9ea9d79846c1fba20a33 592c28cdaea91916b3a80d838b9987d2 1c8ae91d8b7f2d2ad612978c3c732e3f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional INIA |
repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
_version_ |
1833331740075098112 |
spelling |
Goycochea Casas, GianmarcoBaselly Villanueva, Juan RodrigoCoimbra Limeira, Mathaus MessiasEleto Torres, Carlos Moreira MiquelinoGarcia Leite, Hélio2023-10-02T15:49:10Z2023-10-02T15:49:10Z2023-09-21Casas, G.; Baselly, J.; Limeira, M; Torres, C.; & Leite, H. (2023). Classifying the risk of forest loss in the Peruvian Amazon Rainforest: An alternative approach for sustainable forest management using artificial intelligence. Trees, Forests and People, 100440. doi: 10.1016/j.tfp.2023.1004402666-7193https://hdl.handle.net/20.500.12955/2293https://doi.org/10.1016/j.tfp.2023.100440Peruvian Amazonian rainforests are constantly threatened by forest loss. Understanding changes in forest cover and assessing the level of risk is a permanent concern for numerous scientists and forest authorities. There are many conservation programs for Peruvian forests that involve collaborative efforts and employ diverse methodologies for forest monitoring. In this study, we propose an alternative approach to decision-making for forest preservation, aiming to classify the risk of forest loss in districts within the Peruvian Amazon rainforest. This classification enables sustainable forest management. To accomplish this, we utilized unsupervised learning artificial intelligence through Kohonen's neural network. The network was trained using a historical database spanning from 2001 to 2021, which includes variables such as forest cover and loss, climate, topography, hydrographic networks, and timber forest concessions. Through this approach, the network successfully established five clusters. Following preliminary analysis, we designated these clusters as: low, medium, high, very high, and extremely high risk of forest loss. Kohonen networks demonstrated their effectiveness in clustering forest loss and forest cover. The results indicate a shifting trend among the classes over time, with an increase in the categories exhibiting high and very high risk of forest cover loss. This study provides valuable information for decision-making in the prevention and conservation of Peruvian forests. We strongly recommend maintaining vigilance, particularly in districts classified as a very high or extremely high risk of losing forest cover.application/pdfengElsevierNLurn:issn:2666-7193Trees, Forests and Peopleinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAKohonen neural networkForest conservationForest preventionForest preventionhttps://purl.org/pe-repo/ocde/ford#4.01.02Forest conservationConservación de montesForest protectionProtección forestalArtificial intelligenceInteligencia artificialClassifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligenceinfo:eu-repo/semantics/articleORIGINALGoycochea_et-al_2023_forest_loss.pdfGoycochea_et-al_2023_forest_loss.pdfArticle (English)application/pdf9958515https://repositorio.inia.gob.pe/bitstreams/e0ee63bd-318f-4fd2-a6ad-04a20f56e825/download68a5d391f8a436a77361760f52f1cadeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/e1bd8c8b-420b-41b8-ad23-7bbe10efe428/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTGoycochea_et-al_2023_forest_loss.pdf.txtGoycochea_et-al_2023_forest_loss.pdf.txtExtracted texttext/plain54196https://repositorio.inia.gob.pe/bitstreams/0be9fe52-37dd-41dc-82a2-47a76944dff6/download592c28cdaea91916b3a80d838b9987d2MD53THUMBNAILGoycochea_et-al_2023_forest_loss.pdf.jpgGoycochea_et-al_2023_forest_loss.pdf.jpgGenerated Thumbnailimage/jpeg1655https://repositorio.inia.gob.pe/bitstreams/1f069392-879c-4b9a-bf8b-7f9296725984/download1c8ae91d8b7f2d2ad612978c3c732e3fMD5420.500.12955/2293oai:repositorio.inia.gob.pe:20.500.12955/22932023-10-02 10:49:12.868http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.882472 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).