Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence

Descripción del Articulo

Peruvian Amazonian rainforests are constantly threatened by forest loss. Understanding changes in forest cover and assessing the level of risk is a permanent concern for numerous scientists and forest authorities. There are many conservation programs for Peruvian forests that involve collaborative e...

Descripción completa

Detalles Bibliográficos
Autores: Goycochea Casas, Gianmarco, Baselly Villanueva, Juan Rodrigo, Coimbra Limeira, Mathaus Messias, Eleto Torres, Carlos Moreira Miquelino, Garcia Leite, Hélio
Formato: artículo
Fecha de Publicación:2023
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2293
Enlace del recurso:https://hdl.handle.net/20.500.12955/2293
https://doi.org/10.1016/j.tfp.2023.100440
Nivel de acceso:acceso abierto
Materia:Kohonen neural network
Forest conservation
Forest prevention
https://purl.org/pe-repo/ocde/ford#4.01.02
Conservación de montes
Forest protection
Protección forestal
Artificial intelligence
Inteligencia artificial
id INIA_2c32cab10744f72e6135a3ee518c0329
oai_identifier_str oai:null:20.500.12955/2293
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence
title Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence
spellingShingle Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence
Goycochea Casas, Gianmarco
Kohonen neural network
Forest conservation
Forest prevention
Forest prevention
https://purl.org/pe-repo/ocde/ford#4.01.02
Forest conservation
Conservación de montes
Forest protection
Protección forestal
Artificial intelligence
Inteligencia artificial
title_short Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence
title_full Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence
title_fullStr Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence
title_full_unstemmed Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence
title_sort Classifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligence
author Goycochea Casas, Gianmarco
author_facet Goycochea Casas, Gianmarco
Baselly Villanueva, Juan Rodrigo
Coimbra Limeira, Mathaus Messias
Eleto Torres, Carlos Moreira Miquelino
Garcia Leite, Hélio
author_role author
author2 Baselly Villanueva, Juan Rodrigo
Coimbra Limeira, Mathaus Messias
Eleto Torres, Carlos Moreira Miquelino
Garcia Leite, Hélio
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Goycochea Casas, Gianmarco
Baselly Villanueva, Juan Rodrigo
Coimbra Limeira, Mathaus Messias
Eleto Torres, Carlos Moreira Miquelino
Garcia Leite, Hélio
dc.subject.es_PE.fl_str_mv Kohonen neural network
Forest conservation
Forest prevention
Forest prevention
topic Kohonen neural network
Forest conservation
Forest prevention
Forest prevention
https://purl.org/pe-repo/ocde/ford#4.01.02
Forest conservation
Conservación de montes
Forest protection
Protección forestal
Artificial intelligence
Inteligencia artificial
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.02
dc.subject.agrovoc.es_PE.fl_str_mv Forest conservation
Conservación de montes
Forest protection
Protección forestal
Artificial intelligence
Inteligencia artificial
description Peruvian Amazonian rainforests are constantly threatened by forest loss. Understanding changes in forest cover and assessing the level of risk is a permanent concern for numerous scientists and forest authorities. There are many conservation programs for Peruvian forests that involve collaborative efforts and employ diverse methodologies for forest monitoring. In this study, we propose an alternative approach to decision-making for forest preservation, aiming to classify the risk of forest loss in districts within the Peruvian Amazon rainforest. This classification enables sustainable forest management. To accomplish this, we utilized unsupervised learning artificial intelligence through Kohonen's neural network. The network was trained using a historical database spanning from 2001 to 2021, which includes variables such as forest cover and loss, climate, topography, hydrographic networks, and timber forest concessions. Through this approach, the network successfully established five clusters. Following preliminary analysis, we designated these clusters as: low, medium, high, very high, and extremely high risk of forest loss. Kohonen networks demonstrated their effectiveness in clustering forest loss and forest cover. The results indicate a shifting trend among the classes over time, with an increase in the categories exhibiting high and very high risk of forest cover loss. This study provides valuable information for decision-making in the prevention and conservation of Peruvian forests. We strongly recommend maintaining vigilance, particularly in districts classified as a very high or extremely high risk of losing forest cover.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-02T15:49:10Z
dc.date.available.none.fl_str_mv 2023-10-02T15:49:10Z
dc.date.issued.fl_str_mv 2023-09-21
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Casas, G.; Baselly, J.; Limeira, M; Torres, C.; & Leite, H. (2023). Classifying the risk of forest loss in the Peruvian Amazon Rainforest: An alternative approach for sustainable forest management using artificial intelligence. Trees, Forests and People, 100440. doi: 10.1016/j.tfp.2023.100440
dc.identifier.issn.none.fl_str_mv 2666-7193
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2293
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.tfp.2023.100440
identifier_str_mv Casas, G.; Baselly, J.; Limeira, M; Torres, C.; & Leite, H. (2023). Classifying the risk of forest loss in the Peruvian Amazon Rainforest: An alternative approach for sustainable forest management using artificial intelligence. Trees, Forests and People, 100440. doi: 10.1016/j.tfp.2023.100440
2666-7193
url https://hdl.handle.net/20.500.12955/2293
https://doi.org/10.1016/j.tfp.2023.100440
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_PE.fl_str_mv urn:issn:2666-7193
dc.relation.ispartofseries.es_PE.fl_str_mv Trees, Forests and People
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.publisher.country.es_PE.fl_str_mv NL
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/e0ee63bd-318f-4fd2-a6ad-04a20f56e825/download
https://repositorio.inia.gob.pe/bitstreams/e1bd8c8b-420b-41b8-ad23-7bbe10efe428/download
https://repositorio.inia.gob.pe/bitstreams/0be9fe52-37dd-41dc-82a2-47a76944dff6/download
https://repositorio.inia.gob.pe/bitstreams/1f069392-879c-4b9a-bf8b-7f9296725984/download
bitstream.checksum.fl_str_mv 68a5d391f8a436a77361760f52f1cade
8a4605be74aa9ea9d79846c1fba20a33
592c28cdaea91916b3a80d838b9987d2
1c8ae91d8b7f2d2ad612978c3c732e3f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331740075098112
spelling Goycochea Casas, GianmarcoBaselly Villanueva, Juan RodrigoCoimbra Limeira, Mathaus MessiasEleto Torres, Carlos Moreira MiquelinoGarcia Leite, Hélio2023-10-02T15:49:10Z2023-10-02T15:49:10Z2023-09-21Casas, G.; Baselly, J.; Limeira, M; Torres, C.; & Leite, H. (2023). Classifying the risk of forest loss in the Peruvian Amazon Rainforest: An alternative approach for sustainable forest management using artificial intelligence. Trees, Forests and People, 100440. doi: 10.1016/j.tfp.2023.1004402666-7193https://hdl.handle.net/20.500.12955/2293https://doi.org/10.1016/j.tfp.2023.100440Peruvian Amazonian rainforests are constantly threatened by forest loss. Understanding changes in forest cover and assessing the level of risk is a permanent concern for numerous scientists and forest authorities. There are many conservation programs for Peruvian forests that involve collaborative efforts and employ diverse methodologies for forest monitoring. In this study, we propose an alternative approach to decision-making for forest preservation, aiming to classify the risk of forest loss in districts within the Peruvian Amazon rainforest. This classification enables sustainable forest management. To accomplish this, we utilized unsupervised learning artificial intelligence through Kohonen's neural network. The network was trained using a historical database spanning from 2001 to 2021, which includes variables such as forest cover and loss, climate, topography, hydrographic networks, and timber forest concessions. Through this approach, the network successfully established five clusters. Following preliminary analysis, we designated these clusters as: low, medium, high, very high, and extremely high risk of forest loss. Kohonen networks demonstrated their effectiveness in clustering forest loss and forest cover. The results indicate a shifting trend among the classes over time, with an increase in the categories exhibiting high and very high risk of forest cover loss. This study provides valuable information for decision-making in the prevention and conservation of Peruvian forests. We strongly recommend maintaining vigilance, particularly in districts classified as a very high or extremely high risk of losing forest cover.application/pdfengElsevierNLurn:issn:2666-7193Trees, Forests and Peopleinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAKohonen neural networkForest conservationForest preventionForest preventionhttps://purl.org/pe-repo/ocde/ford#4.01.02Forest conservationConservación de montesForest protectionProtección forestalArtificial intelligenceInteligencia artificialClassifying the risk of forest loss in the Peruvian amazon rainforest: An alternative approach for sustainable forest management using artificial intelligenceinfo:eu-repo/semantics/articleORIGINALGoycochea_et-al_2023_forest_loss.pdfGoycochea_et-al_2023_forest_loss.pdfArticle (English)application/pdf9958515https://repositorio.inia.gob.pe/bitstreams/e0ee63bd-318f-4fd2-a6ad-04a20f56e825/download68a5d391f8a436a77361760f52f1cadeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/e1bd8c8b-420b-41b8-ad23-7bbe10efe428/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTGoycochea_et-al_2023_forest_loss.pdf.txtGoycochea_et-al_2023_forest_loss.pdf.txtExtracted texttext/plain54196https://repositorio.inia.gob.pe/bitstreams/0be9fe52-37dd-41dc-82a2-47a76944dff6/download592c28cdaea91916b3a80d838b9987d2MD53THUMBNAILGoycochea_et-al_2023_forest_loss.pdf.jpgGoycochea_et-al_2023_forest_loss.pdf.jpgGenerated Thumbnailimage/jpeg1655https://repositorio.inia.gob.pe/bitstreams/1f069392-879c-4b9a-bf8b-7f9296725984/download1c8ae91d8b7f2d2ad612978c3c732e3fMD5420.500.12955/2293oai:repositorio.inia.gob.pe:20.500.12955/22932023-10-02 10:49:12.868http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.882472
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).