Ecological zone-based volume estimation of Calycophyllum spruceanum and Cedrelinga cateniformis in the Northeastern Peruvian Amazon

Descripción del Articulo

Forest volume modeling plays a fundamental role in forest inventory, biomass estimation, and the sustainable management of timber resources. In the Amazon region of Peru, native species such as Calycophyllum spruceanum and Cedrelinga cateniformis hold high ecological and commercial value, yet remain...

Descripción completa

Detalles Bibliográficos
Autores: Koch Duarte, Christian, del Aguila Piña, Carlos Francisco, Fernández Sandoval, Andrés, Cárdenas Rengifo, Gloria Patricia, Santillán Gonzáles, Manuel Dante, Salazar Hinostroza, Evelin Judith, Castedo Dorado, Fernando, Álvarez Álvarez, Pedro, Goycochea Casas, Gianmarco, Baselly Villanueva, Juan Rodrigo
Formato: artículo
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2950
Enlace del recurso:http://hdl.handle.net/20.500.12955/2950
https://doi.org/10.1016/j.tfp.2025.101085
Nivel de acceso:acceso abierto
Materia:Allometric volume functions
Forest inventory
Tropical silviculture
Regression
Funciones alométricas de volumen
Inventario forestal
Silvicultura tropical
Regresión
https://purl.org/pe-repo/ocde/ford#4.01.00
Inventario forestal; Forest inventories; Silvicultura; Silviculture; Modelo matemático; Mathematical models; Medio ambiente; Environment; Bosque tropical; Tropical forests; Ordenación forestal; Forest management.
Descripción
Sumario:Forest volume modeling plays a fundamental role in forest inventory, biomass estimation, and the sustainable management of timber resources. In the Amazon region of Peru, native species such as Calycophyllum spruceanum and Cedrelinga cateniformis hold high ecological and commercial value, yet remain understudied in terms of volumetric estimation. This study aimed to develop and evaluate volumetric models for both species across three ecological zones—humid forest, very humid forest, and dry forest—representing the environmental diversity of the northeastern Peruvian Amazon. A total of 18 volumetric models were fitted for each species and site condition using linear regression techniques. Model performance was assessed through adjusted coefficient of determination (R²adj), root mean square error (RMSE), mean absolute error (MAE), Akaike Information Criterion (AIC), and diagnostic analyses including residual plots and relative error histograms. The results revealed that model performance varied by ecological zone, with the dry forest models showing the highest precision and lowest residual dispersion. Models M3 (Spurr), M4 (Schumacher & Hall), and M9 (Meyer) consistently achieved strong predictive accuracy. Prediction errors were higher in small-volume classes, suggesting the need for caution when applying models to young or small-diameter trees. The developed models are statistically reliable, requiring minimal input variables for the accurate estimation of the timber volume of the two species across various Amazonian environments. It is recommended to adopt zone-specific models for operational use and to continue expanding regional forest databases to improve future model calibration and validation.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).