Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes
Descripción del Articulo
Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient ma...
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2016 |
Institución: | Instituto Geofísico del Perú |
Repositorio: | IGP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/3772 |
Enlace del recurso: | http://hdl.handle.net/20.500.12816/3772 https://doi.org/10.5194/angeo-34-815-2016 |
Nivel de acceso: | acceso abierto |
Materia: | Ionosphere Wave propagation Waves in plasma http://purl.org/pe-repo/ocde/ford#1.05.01 |
id |
IGPR_e7d1c86c52edb4f92f86adc38066c254 |
---|---|
oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/3772 |
network_acronym_str |
IGPR |
network_name_str |
IGP-Institucional |
repository_id_str |
4701 |
dc.title.none.fl_str_mv |
Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes |
title |
Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes |
spellingShingle |
Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes Xu, Xiang Ionosphere Wave propagation Waves in plasma http://purl.org/pe-repo/ocde/ford#1.05.01 |
title_short |
Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes |
title_full |
Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes |
title_fullStr |
Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes |
title_full_unstemmed |
Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes |
title_sort |
Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes |
author |
Xu, Xiang |
author_facet |
Xu, Xiang Zhou, Chen Shi, Run Ni, Binbin Zhao, Zhengyu Zhang, Yuannong |
author_role |
author |
author2 |
Zhou, Chen Shi, Run Ni, Binbin Zhao, Zhengyu Zhang, Yuannong |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Xu, Xiang Zhou, Chen Shi, Run Ni, Binbin Zhao, Zhengyu Zhang, Yuannong |
dc.subject.none.fl_str_mv |
Ionosphere Wave propagation Waves in plasma |
topic |
Ionosphere Wave propagation Waves in plasma http://purl.org/pe-repo/ocde/ford#1.05.01 |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.05.01 |
description |
Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012) model and the neutral atmosphere model (NRLMSISE-00), including the High Frequency Active Auroral Research Program (HAARP; 62.39°N, 145.15°W), Wuhan (30.52°N, 114.32°E) and Jicamarca (11.95°S, 76.87°W) at 02:00 and 14:00LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature oscillation decreases with latitude in the daytime ionosphere, while it increases with latitude in the nighttime ionosphere; both the electron temperature oscillation amplitude and the ground ULF wave magnitude decreases as the modulation frequency increases; when the electron temperature oscillation is fixed as input, the radiation efficiency of the ring current source is higher in the nighttime ionosphere than in the daytime ionosphere. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2018-11-21T14:29:50Z |
dc.date.available.none.fl_str_mv |
2018-11-21T14:29:50Z |
dc.date.issued.fl_str_mv |
2016-09-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.none.fl_str_mv |
Xu, X., Zhou, C., Shi, R., Ni, B., Zhao, Z., & Zhang, Y. (2016). Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes.==$Annales Geophysicae, 34$==(9), 815–829. https://doi.org/10.5194/angeo-34-815-2016 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/3772 |
dc.identifier.journal.none.fl_str_mv |
Annales Geophysicae |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.5194/angeo-34-815-2016 |
identifier_str_mv |
Xu, X., Zhou, C., Shi, R., Ni, B., Zhao, Z., & Zhang, Y. (2016). Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes.==$Annales Geophysicae, 34$==(9), 815–829. https://doi.org/10.5194/angeo-34-815-2016 Annales Geophysicae |
url |
http://hdl.handle.net/20.500.12816/3772 https://doi.org/10.5194/angeo-34-815-2016 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:0992-7689 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
European Geosciences Union |
publisher.none.fl_str_mv |
European Geosciences Union |
dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
instname_str |
Instituto Geofísico del Perú |
instacron_str |
IGP |
institution |
IGP |
reponame_str |
IGP-Institucional |
collection |
IGP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/e94c658f-6206-43c0-9a24-f20dbeecdf7b/download https://repositorio.igp.gob.pe/bitstreams/581aee73-109f-484d-9f66-ba296d74b778/download https://repositorio.igp.gob.pe/bitstreams/a506ef1e-ec6d-4248-a4d9-b1f2adb8e8e7/download https://repositorio.igp.gob.pe/bitstreams/7f951d21-45a0-435c-9710-ca66cbb7c02e/download |
bitstream.checksum.fl_str_mv |
e2a1a9274471750032cbb7277d742777 ef941c35636116525aadeaab7bbf4ca3 2e233e5fa1ea890ca9190c990fce971a 33e355709ac48efd7e873c1b806c6a51 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
repository.mail.fl_str_mv |
biblio@igp.gob.pe |
_version_ |
1842618512512647168 |
spelling |
Xu, XiangZhou, ChenShi, RunNi, BinbinZhao, ZhengyuZhang, Yuannong2018-11-21T14:29:50Z2018-11-21T14:29:50Z2016-09-21Xu, X., Zhou, C., Shi, R., Ni, B., Zhao, Z., & Zhang, Y. (2016). Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes.==$Annales Geophysicae, 34$==(9), 815–829. https://doi.org/10.5194/angeo-34-815-2016http://hdl.handle.net/20.500.12816/3772Annales Geophysicaehttps://doi.org/10.5194/angeo-34-815-2016Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012) model and the neutral atmosphere model (NRLMSISE-00), including the High Frequency Active Auroral Research Program (HAARP; 62.39°N, 145.15°W), Wuhan (30.52°N, 114.32°E) and Jicamarca (11.95°S, 76.87°W) at 02:00 and 14:00LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature oscillation decreases with latitude in the daytime ionosphere, while it increases with latitude in the nighttime ionosphere; both the electron temperature oscillation amplitude and the ground ULF wave magnitude decreases as the modulation frequency increases; when the electron temperature oscillation is fixed as input, the radiation efficiency of the ring current source is higher in the nighttime ionosphere than in the daytime ionosphere.Por paresapplication/pdfengEuropean Geosciences Unionurn:issn:0992-7689info:eu-repo/semantics/openAccessIonosphereWave propagationWaves in plasmahttp://purl.org/pe-repo/ocde/ford#1.05.01Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudesinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALIGP-1-1-1-1521150144.pdfIGP-1-1-1-1521150144.pdfapplication/pdf6083981https://repositorio.igp.gob.pe/bitstreams/e94c658f-6206-43c0-9a24-f20dbeecdf7b/downloade2a1a9274471750032cbb7277d742777MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8391https://repositorio.igp.gob.pe/bitstreams/581aee73-109f-484d-9f66-ba296d74b778/downloadef941c35636116525aadeaab7bbf4ca3MD52THUMBNAILIGP-1-1-1-1521150144.pdf.jpgIGP-1-1-1-1521150144.pdf.jpgIM Thumbnailimage/jpeg92891https://repositorio.igp.gob.pe/bitstreams/a506ef1e-ec6d-4248-a4d9-b1f2adb8e8e7/download2e233e5fa1ea890ca9190c990fce971aMD53TEXTIGP-1-1-1-1521150144.pdf.txtIGP-1-1-1-1521150144.pdf.txtExtracted texttext/plain72243https://repositorio.igp.gob.pe/bitstreams/7f951d21-45a0-435c-9710-ca66cbb7c02e/download33e355709ac48efd7e873c1b806c6a51MD5420.500.12816/3772oai:repositorio.igp.gob.pe:20.500.12816/37722025-08-15 10:49:28.609open.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.pePGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMtbmQvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyIC8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbC1TaW5EZXJpdmFkYXMgNC4wIEludGVybmFjaW9uYWw8L2E+Lg== |
score |
13.439101 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).