Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modes

Descripción del Articulo

VHF radars near the geomagnetic equator receive coherent reflections from plasma density irregularities between 130 and 160 km in altitude during the daytime. Though researchers first discovered these 150 km echoes over 50 years ago and use them to monitor vertical plasma drifts, the underlying mech...

Descripción completa

Detalles Bibliográficos
Autores: Oppenheim, Meers M., Dimant, Yakov S.
Formato: artículo
Fecha de Publicación:2016
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/3716
Enlace del recurso:http://hdl.handle.net/20.500.12816/3716
https://doi.org/10.1002/2016GL068179
Nivel de acceso:acceso abierto
Materia:Ionosphere
Plasma
Simulation
Photoelectron
150 km
Radar
http://purl.org/pe-repo/ocde/ford#1.05.01
id IGPR_dfae93e7551d66a2e99be7f260225f41
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/3716
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
spelling Oppenheim, Meers M.Dimant, Yakov S.2018-11-20T12:29:49Z2018-11-20T12:29:49Z2016-04-27Oppenheim, M. M., & Dimant, Y. S. (2016). Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modes.==$Geophysical Research Letters, 43$==(8), 3637-3644. https://doi.org/10.1002/2016GL068179http://hdl.handle.net/20.500.12816/3716Geophysical Research Lettershttps://doi.org/10.1002/2016GL068179VHF radars near the geomagnetic equator receive coherent reflections from plasma density irregularities between 130 and 160 km in altitude during the daytime. Though researchers first discovered these 150 km echoes over 50 years ago and use them to monitor vertical plasma drifts, the underlying mechanism that creates them remains a mystery. This paper uses large‐scale kinetic simulations to show that photoelectrons can drive electron waves, which then enhance ion density irregularities that radars could observe as 150 km echoes. This model explains why 150 km echoes exist only during the day and why they appear at their lowest altitudes near noon. It predicts the spectral structure observed by Chau (2004) and suggests observations that can further evaluate this mechanism. It also shows the types and strength of electron modes that photoelectron‐wave interactions generate in a magnetized plasma.Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:0094-8276info:eu-repo/semantics/openAccessIonospherePlasmaSimulationPhotoelectron150 kmRadarhttp://purl.org/pe-repo/ocde/ford#1.05.01Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modesinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALIGP-1-1-1-1466615601.pdfIGP-1-1-1-1466615601.pdfapplication/pdf3701038https://repositorio.igp.gob.pe/bitstreams/70d4b1f5-0644-48db-a827-ce1260d1393d/download06a57c48bf6062a3b965be902b072bf9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8391https://repositorio.igp.gob.pe/bitstreams/71d12c90-014f-4371-b482-a2b96d571ce4/downloadef941c35636116525aadeaab7bbf4ca3MD52THUMBNAILIGP-1-1-1-1466615601.pdf.jpgIGP-1-1-1-1466615601.pdf.jpgIM Thumbnailimage/jpeg104077https://repositorio.igp.gob.pe/bitstreams/c3ef56b1-e4ca-4559-ab60-d0bd56025b69/downloadeb94a3644f96541e0aeadc707d6d6bfbMD53TEXTIGP-1-1-1-1466615601.pdf.txtIGP-1-1-1-1466615601.pdf.txtExtracted texttext/plain29360https://repositorio.igp.gob.pe/bitstreams/8eb8a4ee-0bfc-4e3d-acf7-61a9614ec9d5/download7b70f16efd5bc5c7cf33bf294aa43c79MD5420.500.12816/3716oai:repositorio.igp.gob.pe:20.500.12816/37162025-08-12 11:38:52.04open.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.pePGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMtbmQvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyIC8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbC1TaW5EZXJpdmFkYXMgNC4wIEludGVybmFjaW9uYWw8L2E+Lg==
dc.title.none.fl_str_mv Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modes
title Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modes
spellingShingle Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modes
Oppenheim, Meers M.
Ionosphere
Plasma
Simulation
Photoelectron
150 km
Radar
http://purl.org/pe-repo/ocde/ford#1.05.01
title_short Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modes
title_full Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modes
title_fullStr Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modes
title_full_unstemmed Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modes
title_sort Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modes
author Oppenheim, Meers M.
author_facet Oppenheim, Meers M.
Dimant, Yakov S.
author_role author
author2 Dimant, Yakov S.
author2_role author
dc.contributor.author.fl_str_mv Oppenheim, Meers M.
Dimant, Yakov S.
dc.subject.none.fl_str_mv Ionosphere
Plasma
Simulation
Photoelectron
150 km
Radar
topic Ionosphere
Plasma
Simulation
Photoelectron
150 km
Radar
http://purl.org/pe-repo/ocde/ford#1.05.01
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.01
description VHF radars near the geomagnetic equator receive coherent reflections from plasma density irregularities between 130 and 160 km in altitude during the daytime. Though researchers first discovered these 150 km echoes over 50 years ago and use them to monitor vertical plasma drifts, the underlying mechanism that creates them remains a mystery. This paper uses large‐scale kinetic simulations to show that photoelectrons can drive electron waves, which then enhance ion density irregularities that radars could observe as 150 km echoes. This model explains why 150 km echoes exist only during the day and why they appear at their lowest altitudes near noon. It predicts the spectral structure observed by Chau (2004) and suggests observations that can further evaluate this mechanism. It also shows the types and strength of electron modes that photoelectron‐wave interactions generate in a magnetized plasma.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2018-11-20T12:29:49Z
dc.date.available.none.fl_str_mv 2018-11-20T12:29:49Z
dc.date.issued.fl_str_mv 2016-04-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Oppenheim, M. M., & Dimant, Y. S. (2016). Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modes.==$Geophysical Research Letters, 43$==(8), 3637-3644. https://doi.org/10.1002/2016GL068179
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/3716
dc.identifier.journal.none.fl_str_mv Geophysical Research Letters
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1002/2016GL068179
identifier_str_mv Oppenheim, M. M., & Dimant, Y. S. (2016). Photoelectron‐induced waves: A likely source of 150 km radar echoes and enhanced electron modes.==$Geophysical Research Letters, 43$==(8), 3637-3644. https://doi.org/10.1002/2016GL068179
Geophysical Research Letters
url http://hdl.handle.net/20.500.12816/3716
https://doi.org/10.1002/2016GL068179
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:0094-8276
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/70d4b1f5-0644-48db-a827-ce1260d1393d/download
https://repositorio.igp.gob.pe/bitstreams/71d12c90-014f-4371-b482-a2b96d571ce4/download
https://repositorio.igp.gob.pe/bitstreams/c3ef56b1-e4ca-4559-ab60-d0bd56025b69/download
https://repositorio.igp.gob.pe/bitstreams/8eb8a4ee-0bfc-4e3d-acf7-61a9614ec9d5/download
bitstream.checksum.fl_str_mv 06a57c48bf6062a3b965be902b072bf9
ef941c35636116525aadeaab7bbf4ca3
eb94a3644f96541e0aeadc707d6d6bfb
7b70f16efd5bc5c7cf33bf294aa43c79
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618279958413312
score 13.754616
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).