Aperture-synthesis radar imaging with compressive sensing for ionospheric research
Descripción del Articulo
Inverse methods involving compressive sensing are tested in the application of two-dimensional aperture-synthesis imaging of radar backscatter from field-aligned plasma density irregularities in the ionosphere. We consider basis pursuit denoising, implemented with the fast iterative shrinkage thresh...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Instituto Geofísico del Perú |
Repositorio: | IGP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/4694 |
Enlace del recurso: | http://hdl.handle.net/20.500.12816/4694 https://doi.org/10.1029/2019RS006805 |
Nivel de acceso: | acceso abierto |
Materia: | Ionospheric irregularities Imaging Compressive sensing Coherent scatter Inverse methods http://purl.org/pe-repo/ocde/ford#1.05.01 |
id |
IGPR_de4b4a5084587f8169b042e9e6c5f05e |
---|---|
oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/4694 |
network_acronym_str |
IGPR |
network_name_str |
IGP-Institucional |
repository_id_str |
4701 |
dc.title.none.fl_str_mv |
Aperture-synthesis radar imaging with compressive sensing for ionospheric research |
title |
Aperture-synthesis radar imaging with compressive sensing for ionospheric research |
spellingShingle |
Aperture-synthesis radar imaging with compressive sensing for ionospheric research Hysell, D. L. Ionospheric irregularities Imaging Compressive sensing Coherent scatter Inverse methods http://purl.org/pe-repo/ocde/ford#1.05.01 |
title_short |
Aperture-synthesis radar imaging with compressive sensing for ionospheric research |
title_full |
Aperture-synthesis radar imaging with compressive sensing for ionospheric research |
title_fullStr |
Aperture-synthesis radar imaging with compressive sensing for ionospheric research |
title_full_unstemmed |
Aperture-synthesis radar imaging with compressive sensing for ionospheric research |
title_sort |
Aperture-synthesis radar imaging with compressive sensing for ionospheric research |
author |
Hysell, D. L. |
author_facet |
Hysell, D. L. Sharma, P. Urco, M. Milla, Marco |
author_role |
author |
author2 |
Sharma, P. Urco, M. Milla, Marco |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Hysell, D. L. Sharma, P. Urco, M. Milla, Marco |
dc.subject.none.fl_str_mv |
Ionospheric irregularities Imaging Compressive sensing Coherent scatter Inverse methods |
topic |
Ionospheric irregularities Imaging Compressive sensing Coherent scatter Inverse methods http://purl.org/pe-repo/ocde/ford#1.05.01 |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.05.01 |
description |
Inverse methods involving compressive sensing are tested in the application of two-dimensional aperture-synthesis imaging of radar backscatter from field-aligned plasma density irregularities in the ionosphere. We consider basis pursuit denoising, implemented with the fast iterative shrinkage thresholding algorithm, and orthogonal matching pursuit (OMP) with a wavelet basis in the evaluation. These methods are compared with two more conventional optimization methods rooted in entropy maximization (MaxENT) and adaptive beamforming (linearly constrained minimum variance or often “Capon's Method.”) Synthetic data corresponding to an extended ionospheric radar target are considered. We find that MaxENT outperforms the other methods in terms of its ability to recover imagery of an extended target with broad dynamic range. Fast iterative shrinkage thresholding algorithm performs reasonably well but does not reproduce the full dynamic range of the target. It is also the most computationally expensive of the methods tested. OMP is very fast computationally but prone to a high degree of clutter in this application. We also point out that the formulation of MaxENT used here is very similar to OMP in some respects, the difference being that the former reconstructs the logarithm of the image rather than the image itself from basis vectors extracted from the observation matrix. MaxENT could in that regard be considered a form of compressive sensing. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-09-11T13:50:24Z |
dc.date.available.none.fl_str_mv |
2019-09-11T13:50:24Z |
dc.date.issued.fl_str_mv |
2019-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.none.fl_str_mv |
Hysell, D. L., Sharma, P., Urco, M. & Milla, M. A. (2019). Aperture‐synthesis radar imaging with compressive sensing for ionospheric research.==$Radio Science, 54$==(6), 503-516. https://doi.org/10.1029/2019RS006805 |
dc.identifier.govdoc.none.fl_str_mv |
index-oti2018 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/4694 |
dc.identifier.journal.none.fl_str_mv |
Radio Science |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1029/2019RS006805 |
identifier_str_mv |
Hysell, D. L., Sharma, P., Urco, M. & Milla, M. A. (2019). Aperture‐synthesis radar imaging with compressive sensing for ionospheric research.==$Radio Science, 54$==(6), 503-516. https://doi.org/10.1029/2019RS006805 index-oti2018 Radio Science |
url |
http://hdl.handle.net/20.500.12816/4694 https://doi.org/10.1029/2019RS006805 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:0048-6604 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Geophysical Union |
publisher.none.fl_str_mv |
American Geophysical Union |
dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
instname_str |
Instituto Geofísico del Perú |
instacron_str |
IGP |
institution |
IGP |
reponame_str |
IGP-Institucional |
collection |
IGP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/ae9e9a45-da3a-4252-91d5-3d31ff6d571e/download https://repositorio.igp.gob.pe/bitstreams/185f8869-44f5-470a-9ddd-04343e4c4a92/download https://repositorio.igp.gob.pe/bitstreams/e58a9c87-d7f6-4a3b-9f43-81f9a3172b90/download https://repositorio.igp.gob.pe/bitstreams/febed81c-2dc9-40ec-b805-77b5957bab14/download https://repositorio.igp.gob.pe/bitstreams/9cdfd99d-78b9-4a4f-88b2-1908097b5fb7/download https://repositorio.igp.gob.pe/bitstreams/fc40cb8e-103b-4d24-a004-4e017c6bafa0/download |
bitstream.checksum.fl_str_mv |
95c19d35fe320a99ee2098c9b79c66b9 8a4605be74aa9ea9d79846c1fba20a33 b08f7d86148b2172c6deb24e813bba2f 41eff3c87e9a9801dd7601504761a5af 23b1aaee2edd68b773b50a4bf0464b62 99adedb45eab145439bc346ab188e928 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
repository.mail.fl_str_mv |
biblio@igp.gob.pe |
_version_ |
1842618610936184832 |
spelling |
Hysell, D. L.Sharma, P.Urco, M.Milla, Marco2019-09-11T13:50:24Z2019-09-11T13:50:24Z2019-06Hysell, D. L., Sharma, P., Urco, M. & Milla, M. A. (2019). Aperture‐synthesis radar imaging with compressive sensing for ionospheric research.==$Radio Science, 54$==(6), 503-516. https://doi.org/10.1029/2019RS006805index-oti2018http://hdl.handle.net/20.500.12816/4694Radio Sciencehttps://doi.org/10.1029/2019RS006805Inverse methods involving compressive sensing are tested in the application of two-dimensional aperture-synthesis imaging of radar backscatter from field-aligned plasma density irregularities in the ionosphere. We consider basis pursuit denoising, implemented with the fast iterative shrinkage thresholding algorithm, and orthogonal matching pursuit (OMP) with a wavelet basis in the evaluation. These methods are compared with two more conventional optimization methods rooted in entropy maximization (MaxENT) and adaptive beamforming (linearly constrained minimum variance or often “Capon's Method.”) Synthetic data corresponding to an extended ionospheric radar target are considered. We find that MaxENT outperforms the other methods in terms of its ability to recover imagery of an extended target with broad dynamic range. Fast iterative shrinkage thresholding algorithm performs reasonably well but does not reproduce the full dynamic range of the target. It is also the most computationally expensive of the methods tested. OMP is very fast computationally but prone to a high degree of clutter in this application. We also point out that the formulation of MaxENT used here is very similar to OMP in some respects, the difference being that the former reconstructs the logarithm of the image rather than the image itself from basis vectors extracted from the observation matrix. MaxENT could in that regard be considered a form of compressive sensing.Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:0048-6604info:eu-repo/semantics/openAccessIonospheric irregularitiesImagingCompressive sensingCoherent scatterInverse methodshttp://purl.org/pe-repo/ocde/ford#1.05.01Aperture-synthesis radar imaging with compressive sensing for ionospheric researchinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALHysell_et_al_2019_Radio_Science.pdfapplication/pdf1349219https://repositorio.igp.gob.pe/bitstreams/ae9e9a45-da3a-4252-91d5-3d31ff6d571e/download95c19d35fe320a99ee2098c9b79c66b9MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/185f8869-44f5-470a-9ddd-04343e4c4a92/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTHysell_2019_Aperture-synthesis-radar-imaging-with-compressive-sensing-for-ionospheric-research.pdf.txtHysell_2019_Aperture-synthesis-radar-imaging-with-compressive-sensing-for-ionospheric-research.pdf.txtExtracted texttext/plain5034https://repositorio.igp.gob.pe/bitstreams/e58a9c87-d7f6-4a3b-9f43-81f9a3172b90/downloadb08f7d86148b2172c6deb24e813bba2fMD53Hysell_et_al_2019_Radio_Science.pdf.txtHysell_et_al_2019_Radio_Science.pdf.txtExtracted texttext/plain63849https://repositorio.igp.gob.pe/bitstreams/febed81c-2dc9-40ec-b805-77b5957bab14/download41eff3c87e9a9801dd7601504761a5afMD56THUMBNAILHysell_2019_Aperture-synthesis-radar-imaging-with-compressive-sensing-for-ionospheric-research.pdf.jpgHysell_2019_Aperture-synthesis-radar-imaging-with-compressive-sensing-for-ionospheric-research.pdf.jpgIM Thumbnailimage/jpeg100264https://repositorio.igp.gob.pe/bitstreams/9cdfd99d-78b9-4a4f-88b2-1908097b5fb7/download23b1aaee2edd68b773b50a4bf0464b62MD54Hysell_et_al_2019_Radio_Science.pdf.jpgHysell_et_al_2019_Radio_Science.pdf.jpgGenerated Thumbnailimage/jpeg46200https://repositorio.igp.gob.pe/bitstreams/fc40cb8e-103b-4d24-a004-4e017c6bafa0/download99adedb45eab145439bc346ab188e928MD5720.500.12816/4694oai:repositorio.igp.gob.pe:20.500.12816/46942025-08-14 11:14:09.304open.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).