Aperture-synthesis radar imaging with compressive sensing for ionospheric research

Descripción del Articulo

Inverse methods involving compressive sensing are tested in the application of two-dimensional aperture-synthesis imaging of radar backscatter from field-aligned plasma density irregularities in the ionosphere. We consider basis pursuit denoising, implemented with the fast iterative shrinkage thresh...

Descripción completa

Detalles Bibliográficos
Autores: Hysell, D. L., Sharma, P., Urco, M., Milla, Marco
Formato: artículo
Fecha de Publicación:2019
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/4694
Enlace del recurso:http://hdl.handle.net/20.500.12816/4694
https://doi.org/10.1029/2019RS006805
Nivel de acceso:acceso abierto
Materia:Ionospheric irregularities
Imaging
Compressive sensing
Coherent scatter
Inverse methods
http://purl.org/pe-repo/ocde/ford#1.05.01
id IGPR_de4b4a5084587f8169b042e9e6c5f05e
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/4694
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Aperture-synthesis radar imaging with compressive sensing for ionospheric research
title Aperture-synthesis radar imaging with compressive sensing for ionospheric research
spellingShingle Aperture-synthesis radar imaging with compressive sensing for ionospheric research
Hysell, D. L.
Ionospheric irregularities
Imaging
Compressive sensing
Coherent scatter
Inverse methods
http://purl.org/pe-repo/ocde/ford#1.05.01
title_short Aperture-synthesis radar imaging with compressive sensing for ionospheric research
title_full Aperture-synthesis radar imaging with compressive sensing for ionospheric research
title_fullStr Aperture-synthesis radar imaging with compressive sensing for ionospheric research
title_full_unstemmed Aperture-synthesis radar imaging with compressive sensing for ionospheric research
title_sort Aperture-synthesis radar imaging with compressive sensing for ionospheric research
author Hysell, D. L.
author_facet Hysell, D. L.
Sharma, P.
Urco, M.
Milla, Marco
author_role author
author2 Sharma, P.
Urco, M.
Milla, Marco
author2_role author
author
author
dc.contributor.author.fl_str_mv Hysell, D. L.
Sharma, P.
Urco, M.
Milla, Marco
dc.subject.none.fl_str_mv Ionospheric irregularities
Imaging
Compressive sensing
Coherent scatter
Inverse methods
topic Ionospheric irregularities
Imaging
Compressive sensing
Coherent scatter
Inverse methods
http://purl.org/pe-repo/ocde/ford#1.05.01
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.01
description Inverse methods involving compressive sensing are tested in the application of two-dimensional aperture-synthesis imaging of radar backscatter from field-aligned plasma density irregularities in the ionosphere. We consider basis pursuit denoising, implemented with the fast iterative shrinkage thresholding algorithm, and orthogonal matching pursuit (OMP) with a wavelet basis in the evaluation. These methods are compared with two more conventional optimization methods rooted in entropy maximization (MaxENT) and adaptive beamforming (linearly constrained minimum variance or often “Capon's Method.”) Synthetic data corresponding to an extended ionospheric radar target are considered. We find that MaxENT outperforms the other methods in terms of its ability to recover imagery of an extended target with broad dynamic range. Fast iterative shrinkage thresholding algorithm performs reasonably well but does not reproduce the full dynamic range of the target. It is also the most computationally expensive of the methods tested. OMP is very fast computationally but prone to a high degree of clutter in this application. We also point out that the formulation of MaxENT used here is very similar to OMP in some respects, the difference being that the former reconstructs the logarithm of the image rather than the image itself from basis vectors extracted from the observation matrix. MaxENT could in that regard be considered a form of compressive sensing.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-09-11T13:50:24Z
dc.date.available.none.fl_str_mv 2019-09-11T13:50:24Z
dc.date.issued.fl_str_mv 2019-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Hysell, D. L., Sharma, P., Urco, M. & Milla, M. A. (2019). Aperture‐synthesis radar imaging with compressive sensing for ionospheric research.==$Radio Science, 54$==(6), 503-516. https://doi.org/10.1029/2019RS006805
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/4694
dc.identifier.journal.none.fl_str_mv Radio Science
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1029/2019RS006805
identifier_str_mv Hysell, D. L., Sharma, P., Urco, M. & Milla, M. A. (2019). Aperture‐synthesis radar imaging with compressive sensing for ionospheric research.==$Radio Science, 54$==(6), 503-516. https://doi.org/10.1029/2019RS006805
index-oti2018
Radio Science
url http://hdl.handle.net/20.500.12816/4694
https://doi.org/10.1029/2019RS006805
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:0048-6604
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/ae9e9a45-da3a-4252-91d5-3d31ff6d571e/download
https://repositorio.igp.gob.pe/bitstreams/185f8869-44f5-470a-9ddd-04343e4c4a92/download
https://repositorio.igp.gob.pe/bitstreams/e58a9c87-d7f6-4a3b-9f43-81f9a3172b90/download
https://repositorio.igp.gob.pe/bitstreams/febed81c-2dc9-40ec-b805-77b5957bab14/download
https://repositorio.igp.gob.pe/bitstreams/9cdfd99d-78b9-4a4f-88b2-1908097b5fb7/download
https://repositorio.igp.gob.pe/bitstreams/fc40cb8e-103b-4d24-a004-4e017c6bafa0/download
bitstream.checksum.fl_str_mv 95c19d35fe320a99ee2098c9b79c66b9
8a4605be74aa9ea9d79846c1fba20a33
b08f7d86148b2172c6deb24e813bba2f
41eff3c87e9a9801dd7601504761a5af
23b1aaee2edd68b773b50a4bf0464b62
99adedb45eab145439bc346ab188e928
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618610936184832
spelling Hysell, D. L.Sharma, P.Urco, M.Milla, Marco2019-09-11T13:50:24Z2019-09-11T13:50:24Z2019-06Hysell, D. L., Sharma, P., Urco, M. & Milla, M. A. (2019). Aperture‐synthesis radar imaging with compressive sensing for ionospheric research.==$Radio Science, 54$==(6), 503-516. https://doi.org/10.1029/2019RS006805index-oti2018http://hdl.handle.net/20.500.12816/4694Radio Sciencehttps://doi.org/10.1029/2019RS006805Inverse methods involving compressive sensing are tested in the application of two-dimensional aperture-synthesis imaging of radar backscatter from field-aligned plasma density irregularities in the ionosphere. We consider basis pursuit denoising, implemented with the fast iterative shrinkage thresholding algorithm, and orthogonal matching pursuit (OMP) with a wavelet basis in the evaluation. These methods are compared with two more conventional optimization methods rooted in entropy maximization (MaxENT) and adaptive beamforming (linearly constrained minimum variance or often “Capon's Method.”) Synthetic data corresponding to an extended ionospheric radar target are considered. We find that MaxENT outperforms the other methods in terms of its ability to recover imagery of an extended target with broad dynamic range. Fast iterative shrinkage thresholding algorithm performs reasonably well but does not reproduce the full dynamic range of the target. It is also the most computationally expensive of the methods tested. OMP is very fast computationally but prone to a high degree of clutter in this application. We also point out that the formulation of MaxENT used here is very similar to OMP in some respects, the difference being that the former reconstructs the logarithm of the image rather than the image itself from basis vectors extracted from the observation matrix. MaxENT could in that regard be considered a form of compressive sensing.Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:0048-6604info:eu-repo/semantics/openAccessIonospheric irregularitiesImagingCompressive sensingCoherent scatterInverse methodshttp://purl.org/pe-repo/ocde/ford#1.05.01Aperture-synthesis radar imaging with compressive sensing for ionospheric researchinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALHysell_et_al_2019_Radio_Science.pdfapplication/pdf1349219https://repositorio.igp.gob.pe/bitstreams/ae9e9a45-da3a-4252-91d5-3d31ff6d571e/download95c19d35fe320a99ee2098c9b79c66b9MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/185f8869-44f5-470a-9ddd-04343e4c4a92/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTHysell_2019_Aperture-synthesis-radar-imaging-with-compressive-sensing-for-ionospheric-research.pdf.txtHysell_2019_Aperture-synthesis-radar-imaging-with-compressive-sensing-for-ionospheric-research.pdf.txtExtracted texttext/plain5034https://repositorio.igp.gob.pe/bitstreams/e58a9c87-d7f6-4a3b-9f43-81f9a3172b90/downloadb08f7d86148b2172c6deb24e813bba2fMD53Hysell_et_al_2019_Radio_Science.pdf.txtHysell_et_al_2019_Radio_Science.pdf.txtExtracted texttext/plain63849https://repositorio.igp.gob.pe/bitstreams/febed81c-2dc9-40ec-b805-77b5957bab14/download41eff3c87e9a9801dd7601504761a5afMD56THUMBNAILHysell_2019_Aperture-synthesis-radar-imaging-with-compressive-sensing-for-ionospheric-research.pdf.jpgHysell_2019_Aperture-synthesis-radar-imaging-with-compressive-sensing-for-ionospheric-research.pdf.jpgIM Thumbnailimage/jpeg100264https://repositorio.igp.gob.pe/bitstreams/9cdfd99d-78b9-4a4f-88b2-1908097b5fb7/download23b1aaee2edd68b773b50a4bf0464b62MD54Hysell_et_al_2019_Radio_Science.pdf.jpgHysell_et_al_2019_Radio_Science.pdf.jpgGenerated Thumbnailimage/jpeg46200https://repositorio.igp.gob.pe/bitstreams/fc40cb8e-103b-4d24-a004-4e017c6bafa0/download99adedb45eab145439bc346ab188e928MD5720.500.12816/4694oai:repositorio.igp.gob.pe:20.500.12816/46942025-08-14 11:14:09.304open.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).