Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images
Descripción del Articulo
In this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calib...
Autores: | , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Instituto Geofísico del Perú |
Repositorio: | IGP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/4090 |
Enlace del recurso: | http://hdl.handle.net/20.500.12816/4090 https://doi.org/10.3390/rs11030314 |
Nivel de acceso: | acceso abierto |
Materia: | Paranapanema River Turbidity Sedimentation Remote sensing Sediment trap efficiency Reservoir River sediment discharge Suspended particulate matter MODIS Water color http://purl.org/pe-repo/ocde/ford#1.05.00 http://purl.org/pe-repo/ocde/ford#1.05.09 |
id |
IGPR_da83f3791565b04b483fae37e9ffc626 |
---|---|
oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/4090 |
network_acronym_str |
IGPR |
network_name_str |
IGP-Institucional |
repository_id_str |
4701 |
dc.title.none.fl_str_mv |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
title |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
spellingShingle |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images Condé, Rita de Cássia Paranapanema River Turbidity Sedimentation Remote sensing Sediment trap efficiency Reservoir River sediment discharge Suspended particulate matter MODIS Water color http://purl.org/pe-repo/ocde/ford#1.05.00 http://purl.org/pe-repo/ocde/ford#1.05.09 |
title_short |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
title_full |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
title_fullStr |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
title_full_unstemmed |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
title_sort |
Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images |
author |
Condé, Rita de Cássia |
author_facet |
Condé, Rita de Cássia Martinez, Jean-Michel Pessotto, Marco Aurélio Espinoza Villar, Raúl Arnaldo Cochonneau, Gérard Henry, Raoul Lopes, Walszon Nogueira, Marcos |
author_role |
author |
author2 |
Martinez, Jean-Michel Pessotto, Marco Aurélio Espinoza Villar, Raúl Arnaldo Cochonneau, Gérard Henry, Raoul Lopes, Walszon Nogueira, Marcos |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Condé, Rita de Cássia Martinez, Jean-Michel Pessotto, Marco Aurélio Espinoza Villar, Raúl Arnaldo Cochonneau, Gérard Henry, Raoul Lopes, Walszon Nogueira, Marcos |
dc.subject.none.fl_str_mv |
Paranapanema River Turbidity Sedimentation Remote sensing Sediment trap efficiency Reservoir River sediment discharge Suspended particulate matter MODIS Water color |
topic |
Paranapanema River Turbidity Sedimentation Remote sensing Sediment trap efficiency Reservoir River sediment discharge Suspended particulate matter MODIS Water color http://purl.org/pe-repo/ocde/ford#1.05.00 http://purl.org/pe-repo/ocde/ford#1.05.09 |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.05.00 http://purl.org/pe-repo/ocde/ford#1.05.09 |
description |
In this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calibrate a turbidity retrieval algorithm based on MODIS surface reflectance products. An independent field dataset was used to validate the remote sensing estimates showing fine accuracy (RMSE of 9.5 NTU, r = 0.75, N = 138). By processing 13 years of MODIS images since 2000, we showed that satellite data can provide robust turbidity monitoring over the entire transect and can identify extreme sediment discharge events occurring on daily to annual scales. We retrieved the decrease in the water turbidity as a function of distance within each reservoir that is related to sedimentation processes. The remote sensing-retrieved turbidity decrease within the reservoirs ranged from 2 to 62% making possible to infer the reservoir type and operation (storage versus run-of-river reservoirs). The reduction in turbidity assessed from space presented a good relationship with conventional sediment trapping efficiency calculations, demonstrating the potential use of this technology for monitoring the intensity of sedimentation processes within reservoirs and at large scale. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-02-13T14:56:32Z |
dc.date.available.none.fl_str_mv |
2019-02-13T14:56:32Z |
dc.date.issued.fl_str_mv |
2019-02-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.none.fl_str_mv |
Condé, R. C., Martinez, J.-M., Pessotto, M. A., Villar, R., Cochonneau, G., Henry, R., ... Nogueira, M. (2019). Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images.==$Remote Sensing, 11$==(3), 314. https://doi.org/10.3390/rs11030314 |
dc.identifier.govdoc.none.fl_str_mv |
index-oti2018 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/4090 |
dc.identifier.journal.none.fl_str_mv |
Remote Sensing |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/rs11030314 |
identifier_str_mv |
Condé, R. C., Martinez, J.-M., Pessotto, M. A., Villar, R., Cochonneau, G., Henry, R., ... Nogueira, M. (2019). Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images.==$Remote Sensing, 11$==(3), 314. https://doi.org/10.3390/rs11030314 index-oti2018 Remote Sensing |
url |
http://hdl.handle.net/20.500.12816/4090 https://doi.org/10.3390/rs11030314 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2072-4292 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Rio Paranapanema Brasil |
dc.publisher.none.fl_str_mv |
Remote Sensing |
publisher.none.fl_str_mv |
Remote Sensing |
dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
instname_str |
Instituto Geofísico del Perú |
instacron_str |
IGP |
institution |
IGP |
reponame_str |
IGP-Institucional |
collection |
IGP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/ba43c3be-fffd-4dca-b57c-29b131da95af/download https://repositorio.igp.gob.pe/bitstreams/361833b5-9457-4ee7-99a6-c6e52d59de0b/download https://repositorio.igp.gob.pe/bitstreams/a48bb822-83b2-44c7-803a-4b56d65b0aae/download https://repositorio.igp.gob.pe/bitstreams/119c4221-9be0-44a4-9b73-799f2665f43a/download |
bitstream.checksum.fl_str_mv |
8fd978cc54804d5460a1060429586c03 8a4605be74aa9ea9d79846c1fba20a33 714edc36cb3fcc418cefc5ea71d87c11 51864c9903bcacf388d094e95e772ac5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
repository.mail.fl_str_mv |
biblio@igp.gob.pe |
_version_ |
1842618227441532928 |
spelling |
Condé, Rita de CássiaMartinez, Jean-MichelPessotto, Marco AurélioEspinoza Villar, Raúl ArnaldoCochonneau, GérardHenry, RaoulLopes, WalszonNogueira, MarcosRio ParanapanemaBrasil2019-02-13T14:56:32Z2019-02-13T14:56:32Z2019-02-05Condé, R. C., Martinez, J.-M., Pessotto, M. A., Villar, R., Cochonneau, G., Henry, R., ... Nogueira, M. (2019). Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing images.==$Remote Sensing, 11$==(3), 314. https://doi.org/10.3390/rs11030314index-oti2018http://hdl.handle.net/20.500.12816/4090Remote Sensinghttps://doi.org/10.3390/rs11030314In this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calibrate a turbidity retrieval algorithm based on MODIS surface reflectance products. An independent field dataset was used to validate the remote sensing estimates showing fine accuracy (RMSE of 9.5 NTU, r = 0.75, N = 138). By processing 13 years of MODIS images since 2000, we showed that satellite data can provide robust turbidity monitoring over the entire transect and can identify extreme sediment discharge events occurring on daily to annual scales. We retrieved the decrease in the water turbidity as a function of distance within each reservoir that is related to sedimentation processes. The remote sensing-retrieved turbidity decrease within the reservoirs ranged from 2 to 62% making possible to infer the reservoir type and operation (storage versus run-of-river reservoirs). The reduction in turbidity assessed from space presented a good relationship with conventional sediment trapping efficiency calculations, demonstrating the potential use of this technology for monitoring the intensity of sedimentation processes within reservoirs and at large scale.Por paresapplication/pdfengRemote Sensingurn:issn:2072-4292info:eu-repo/semantics/openAccessParanapanema RiverTurbiditySedimentationRemote sensingSediment trap efficiencyReservoirRiver sediment dischargeSuspended particulate matterMODISWater colorhttp://purl.org/pe-repo/ocde/ford#1.05.00http://purl.org/pe-repo/ocde/ford#1.05.09Indirect assessment of sedimentation in hydropower dams using MODIS remote sensing imagesinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALConde_2019.pdfConde_2019.pdfapplication/pdf2926492https://repositorio.igp.gob.pe/bitstreams/ba43c3be-fffd-4dca-b57c-29b131da95af/download8fd978cc54804d5460a1060429586c03MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/361833b5-9457-4ee7-99a6-c6e52d59de0b/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILConde_2019.pdf.jpgConde_2019.pdf.jpgIM Thumbnailimage/jpeg149217https://repositorio.igp.gob.pe/bitstreams/a48bb822-83b2-44c7-803a-4b56d65b0aae/download714edc36cb3fcc418cefc5ea71d87c11MD53TEXTConde_2019.pdf.txtConde_2019.pdf.txtExtracted texttext/plain100512https://repositorio.igp.gob.pe/bitstreams/119c4221-9be0-44a4-9b73-799f2665f43a/download51864c9903bcacf388d094e95e772ac5MD5420.500.12816/4090oai:repositorio.igp.gob.pe:20.500.12816/40902025-08-18 10:57:01.24open.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.448642 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).