What can the internal variability of CMIP5 models tell us about their climate sensitivity?
Descripción del Articulo
The relationship between climate models’ internal variability and their response to external forcings is investigated. Frequency-dependent regressions are performed between the outgoing top-of-atmosphere (TOA) energy fluxes and the global-mean surface temperature in the preindustrial control simulat...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2018 |
| Institución: | Instituto Geofísico del Perú |
| Repositorio: | IGP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/2982 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12816/2982 https://doi.org/10.1175/JCLI-D-17-0736.1 |
| Nivel de acceso: | acceso abierto |
| Materia: | Climate sensitivity Clouds Climate variability Multidecadal variability Tropical variability http://purl.org/pe-repo/ocde/ford#1.05.00 http://purl.org/pe-repo/ocde/ford#1.05.09 http://purl.org/pe-repo/ocde/ford#1.05.10 |
| id |
IGPR_cd6d085ddc32eb756f62eb820208baa0 |
|---|---|
| oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/2982 |
| network_acronym_str |
IGPR |
| network_name_str |
IGP-Institucional |
| repository_id_str |
4701 |
| dc.title.none.fl_str_mv |
What can the internal variability of CMIP5 models tell us about their climate sensitivity? |
| title |
What can the internal variability of CMIP5 models tell us about their climate sensitivity? |
| spellingShingle |
What can the internal variability of CMIP5 models tell us about their climate sensitivity? Lutsko, Nicholas J. Climate sensitivity Clouds Climate variability Multidecadal variability Tropical variability http://purl.org/pe-repo/ocde/ford#1.05.00 http://purl.org/pe-repo/ocde/ford#1.05.09 http://purl.org/pe-repo/ocde/ford#1.05.10 |
| title_short |
What can the internal variability of CMIP5 models tell us about their climate sensitivity? |
| title_full |
What can the internal variability of CMIP5 models tell us about their climate sensitivity? |
| title_fullStr |
What can the internal variability of CMIP5 models tell us about their climate sensitivity? |
| title_full_unstemmed |
What can the internal variability of CMIP5 models tell us about their climate sensitivity? |
| title_sort |
What can the internal variability of CMIP5 models tell us about their climate sensitivity? |
| author |
Lutsko, Nicholas J. |
| author_facet |
Lutsko, Nicholas J. Takahashi, Ken |
| author_role |
author |
| author2 |
Takahashi, Ken |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Lutsko, Nicholas J. Takahashi, Ken |
| dc.subject.none.fl_str_mv |
Climate sensitivity Clouds Climate variability Multidecadal variability Tropical variability |
| topic |
Climate sensitivity Clouds Climate variability Multidecadal variability Tropical variability http://purl.org/pe-repo/ocde/ford#1.05.00 http://purl.org/pe-repo/ocde/ford#1.05.09 http://purl.org/pe-repo/ocde/ford#1.05.10 |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.05.00 http://purl.org/pe-repo/ocde/ford#1.05.09 http://purl.org/pe-repo/ocde/ford#1.05.10 |
| description |
The relationship between climate models’ internal variability and their response to external forcings is investigated. Frequency-dependent regressions are performed between the outgoing top-of-atmosphere (TOA) energy fluxes and the global-mean surface temperature in the preindustrial control simulations of the CMIP5 archive. Two distinct regimes are found. At subdecadal frequencies the surface temperature and the outgoing shortwave flux are in quadrature, while the outgoing longwave flux is linearly related to temperature and acts as a negative feedback on temperature perturbations. On longer time scales the outgoing shortwave and longwave fluxes are both linearly related to temperature, with the longwave continuing to act as a negative feedback and the shortwave acting as a positive feedback on temperature variability. In addition to the different phase relationships, the two regimes can also be seen in estimates of the coherence and of the frequency-dependent regression coefficients. The frequency-dependent regression coefficients for the total cloudy-sky flux on time scales of 2.5 to 3 years are found to be strongly (r² > 0.6) related to the models’ equilibrium climate sensitivities (ECSs), suggesting a potential “emergent constraint” for Earth’s ECS. However, O(100) years of data are required for this relationship to become robust. A simple model for Earth’s surface temperature variability and its relationship to the TOA fluxes is used to provide a physical interpretation of these results. |
| publishDate |
2018 |
| dc.date.accessioned.none.fl_str_mv |
2018-09-18T18:57:15Z |
| dc.date.available.none.fl_str_mv |
2018-09-18T18:57:15Z |
| dc.date.issued.fl_str_mv |
2018 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.none.fl_str_mv |
Lutsko, N. J. & Takahashi, K. (2018). What can the internal variability of CMIP5 models tell us about their climate sensitivity?.==$Journal of Climate, 31$==(13), 5051–5069. https://doi.org/10.1175/JCLI-D-17-0736.1 |
| dc.identifier.govdoc.none.fl_str_mv |
index-oti2018 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/2982 |
| dc.identifier.journal.none.fl_str_mv |
Journal of Climate |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1175/JCLI-D-17-0736.1 |
| identifier_str_mv |
Lutsko, N. J. & Takahashi, K. (2018). What can the internal variability of CMIP5 models tell us about their climate sensitivity?.==$Journal of Climate, 31$==(13), 5051–5069. https://doi.org/10.1175/JCLI-D-17-0736.1 index-oti2018 Journal of Climate |
| url |
http://hdl.handle.net/20.500.12816/2982 https://doi.org/10.1175/JCLI-D-17-0736.1 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:0894-8755 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
American Meteorological Society |
| publisher.none.fl_str_mv |
American Meteorological Society |
| dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
| instname_str |
Instituto Geofísico del Perú |
| instacron_str |
IGP |
| institution |
IGP |
| reponame_str |
IGP-Institucional |
| collection |
IGP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/8be319d4-da60-4a3b-a7c4-db46fb986f29/download https://repositorio.igp.gob.pe/bitstreams/3ee75570-aa54-41c9-a7bd-517a44fcf51f/download https://repositorio.igp.gob.pe/bitstreams/0c1c9faa-e7f6-405a-8d02-285868308e4f/download https://repositorio.igp.gob.pe/bitstreams/5ae9a8b7-7d74-486b-9452-8e5f8f1e9f65/download https://repositorio.igp.gob.pe/bitstreams/54e81111-edeb-419e-8f1d-03ddee00cb8e/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 3c4a4b6eea8abba427edaad071a97168 962e1f666be38ef49608d39c71b94426 a7d93f0a27e9aa6b977b152b73b2f05b 42600ea35803fd15dbd7f2fea52b517d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
| repository.mail.fl_str_mv |
biblio@igp.gob.pe |
| _version_ |
1842618351331835904 |
| spelling |
Lutsko, Nicholas J.Takahashi, Ken2018-09-18T18:57:15Z2018-09-18T18:57:15Z2018Lutsko, N. J. & Takahashi, K. (2018). What can the internal variability of CMIP5 models tell us about their climate sensitivity?.==$Journal of Climate, 31$==(13), 5051–5069. https://doi.org/10.1175/JCLI-D-17-0736.1index-oti2018http://hdl.handle.net/20.500.12816/2982Journal of Climatehttps://doi.org/10.1175/JCLI-D-17-0736.1The relationship between climate models’ internal variability and their response to external forcings is investigated. Frequency-dependent regressions are performed between the outgoing top-of-atmosphere (TOA) energy fluxes and the global-mean surface temperature in the preindustrial control simulations of the CMIP5 archive. Two distinct regimes are found. At subdecadal frequencies the surface temperature and the outgoing shortwave flux are in quadrature, while the outgoing longwave flux is linearly related to temperature and acts as a negative feedback on temperature perturbations. On longer time scales the outgoing shortwave and longwave fluxes are both linearly related to temperature, with the longwave continuing to act as a negative feedback and the shortwave acting as a positive feedback on temperature variability. In addition to the different phase relationships, the two regimes can also be seen in estimates of the coherence and of the frequency-dependent regression coefficients. The frequency-dependent regression coefficients for the total cloudy-sky flux on time scales of 2.5 to 3 years are found to be strongly (r² > 0.6) related to the models’ equilibrium climate sensitivities (ECSs), suggesting a potential “emergent constraint” for Earth’s ECS. However, O(100) years of data are required for this relationship to become robust. A simple model for Earth’s surface temperature variability and its relationship to the TOA fluxes is used to provide a physical interpretation of these results.Por paresapplication/pdfengAmerican Meteorological Societyurn:issn:0894-8755info:eu-repo/semantics/openAccessClimate sensitivityCloudsClimate variabilityMultidecadal variabilityTropical variabilityhttp://purl.org/pe-repo/ocde/ford#1.05.00http://purl.org/pe-repo/ocde/ford#1.05.09http://purl.org/pe-repo/ocde/ford#1.05.10What can the internal variability of CMIP5 models tell us about their climate sensitivity?info:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/8be319d4-da60-4a3b-a7c4-db46fb986f29/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILLutsko_&_Takahashi_2018_ Journal_of_Climate.pdf.jpgLutsko_&_Takahashi_2018_ Journal_of_Climate.pdf.jpgIM Thumbnailimage/jpeg136339https://repositorio.igp.gob.pe/bitstreams/3ee75570-aa54-41c9-a7bd-517a44fcf51f/download3c4a4b6eea8abba427edaad071a97168MD57TEXTlutsko2018.pdf.txtlutsko2018.pdf.txtExtracted texttext/plain84620https://repositorio.igp.gob.pe/bitstreams/0c1c9faa-e7f6-405a-8d02-285868308e4f/download962e1f666be38ef49608d39c71b94426MD54Lutsko_&_Takahashi_2018_ Journal_of_Climate.pdf.txtLutsko_&_Takahashi_2018_ Journal_of_Climate.pdf.txtExtracted texttext/plain72799https://repositorio.igp.gob.pe/bitstreams/5ae9a8b7-7d74-486b-9452-8e5f8f1e9f65/downloada7d93f0a27e9aa6b977b152b73b2f05bMD56ORIGINALLutsko_&_Takahashi_2018_ Journal_of_Climate.pdfLutsko_&_Takahashi_2018_ Journal_of_Climate.pdfapplication/pdf5721236https://repositorio.igp.gob.pe/bitstreams/54e81111-edeb-419e-8f1d-03ddee00cb8e/download42600ea35803fd15dbd7f2fea52b517dMD5520.500.12816/2982oai:repositorio.igp.gob.pe:20.500.12816/29822025-08-18 10:58:45.713open.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.945396 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).