What can the internal variability of CMIP5 models tell us about their climate sensitivity?

Descripción del Articulo

The relationship between climate models’ internal variability and their response to external forcings is investigated. Frequency-dependent regressions are performed between the outgoing top-of-atmosphere (TOA) energy fluxes and the global-mean surface temperature in the preindustrial control simulat...

Descripción completa

Detalles Bibliográficos
Autores: Lutsko, Nicholas J., Takahashi, Ken
Formato: artículo
Fecha de Publicación:2018
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/2982
Enlace del recurso:http://hdl.handle.net/20.500.12816/2982
https://doi.org/10.1175/JCLI-D-17-0736.1
Nivel de acceso:acceso abierto
Materia:Climate sensitivity
Clouds
Climate variability
Multidecadal variability
Tropical variability
http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.09
http://purl.org/pe-repo/ocde/ford#1.05.10
id IGPR_cd6d085ddc32eb756f62eb820208baa0
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/2982
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv What can the internal variability of CMIP5 models tell us about their climate sensitivity?
title What can the internal variability of CMIP5 models tell us about their climate sensitivity?
spellingShingle What can the internal variability of CMIP5 models tell us about their climate sensitivity?
Lutsko, Nicholas J.
Climate sensitivity
Clouds
Climate variability
Multidecadal variability
Tropical variability
http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.09
http://purl.org/pe-repo/ocde/ford#1.05.10
title_short What can the internal variability of CMIP5 models tell us about their climate sensitivity?
title_full What can the internal variability of CMIP5 models tell us about their climate sensitivity?
title_fullStr What can the internal variability of CMIP5 models tell us about their climate sensitivity?
title_full_unstemmed What can the internal variability of CMIP5 models tell us about their climate sensitivity?
title_sort What can the internal variability of CMIP5 models tell us about their climate sensitivity?
author Lutsko, Nicholas J.
author_facet Lutsko, Nicholas J.
Takahashi, Ken
author_role author
author2 Takahashi, Ken
author2_role author
dc.contributor.author.fl_str_mv Lutsko, Nicholas J.
Takahashi, Ken
dc.subject.none.fl_str_mv Climate sensitivity
Clouds
Climate variability
Multidecadal variability
Tropical variability
topic Climate sensitivity
Clouds
Climate variability
Multidecadal variability
Tropical variability
http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.09
http://purl.org/pe-repo/ocde/ford#1.05.10
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.09
http://purl.org/pe-repo/ocde/ford#1.05.10
description The relationship between climate models’ internal variability and their response to external forcings is investigated. Frequency-dependent regressions are performed between the outgoing top-of-atmosphere (TOA) energy fluxes and the global-mean surface temperature in the preindustrial control simulations of the CMIP5 archive. Two distinct regimes are found. At subdecadal frequencies the surface temperature and the outgoing shortwave flux are in quadrature, while the outgoing longwave flux is linearly related to temperature and acts as a negative feedback on temperature perturbations. On longer time scales the outgoing shortwave and longwave fluxes are both linearly related to temperature, with the longwave continuing to act as a negative feedback and the shortwave acting as a positive feedback on temperature variability. In addition to the different phase relationships, the two regimes can also be seen in estimates of the coherence and of the frequency-dependent regression coefficients. The frequency-dependent regression coefficients for the total cloudy-sky flux on time scales of 2.5 to 3 years are found to be strongly (r² > 0.6) related to the models’ equilibrium climate sensitivities (ECSs), suggesting a potential “emergent constraint” for Earth’s ECS. However, O(100) years of data are required for this relationship to become robust. A simple model for Earth’s surface temperature variability and its relationship to the TOA fluxes is used to provide a physical interpretation of these results.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-09-18T18:57:15Z
dc.date.available.none.fl_str_mv 2018-09-18T18:57:15Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Lutsko, N. J. & Takahashi, K. (2018). What can the internal variability of CMIP5 models tell us about their climate sensitivity?.==$Journal of Climate, 31$==(13), 5051–5069. https://doi.org/10.1175/JCLI-D-17-0736.1
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/2982
dc.identifier.journal.none.fl_str_mv Journal of Climate
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1175/JCLI-D-17-0736.1
identifier_str_mv Lutsko, N. J. & Takahashi, K. (2018). What can the internal variability of CMIP5 models tell us about their climate sensitivity?.==$Journal of Climate, 31$==(13), 5051–5069. https://doi.org/10.1175/JCLI-D-17-0736.1
index-oti2018
Journal of Climate
url http://hdl.handle.net/20.500.12816/2982
https://doi.org/10.1175/JCLI-D-17-0736.1
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:0894-8755
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Meteorological Society
publisher.none.fl_str_mv American Meteorological Society
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/8be319d4-da60-4a3b-a7c4-db46fb986f29/download
https://repositorio.igp.gob.pe/bitstreams/3ee75570-aa54-41c9-a7bd-517a44fcf51f/download
https://repositorio.igp.gob.pe/bitstreams/0c1c9faa-e7f6-405a-8d02-285868308e4f/download
https://repositorio.igp.gob.pe/bitstreams/5ae9a8b7-7d74-486b-9452-8e5f8f1e9f65/download
https://repositorio.igp.gob.pe/bitstreams/54e81111-edeb-419e-8f1d-03ddee00cb8e/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
3c4a4b6eea8abba427edaad071a97168
962e1f666be38ef49608d39c71b94426
a7d93f0a27e9aa6b977b152b73b2f05b
42600ea35803fd15dbd7f2fea52b517d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618351331835904
spelling Lutsko, Nicholas J.Takahashi, Ken2018-09-18T18:57:15Z2018-09-18T18:57:15Z2018Lutsko, N. J. & Takahashi, K. (2018). What can the internal variability of CMIP5 models tell us about their climate sensitivity?.==$Journal of Climate, 31$==(13), 5051–5069. https://doi.org/10.1175/JCLI-D-17-0736.1index-oti2018http://hdl.handle.net/20.500.12816/2982Journal of Climatehttps://doi.org/10.1175/JCLI-D-17-0736.1The relationship between climate models’ internal variability and their response to external forcings is investigated. Frequency-dependent regressions are performed between the outgoing top-of-atmosphere (TOA) energy fluxes and the global-mean surface temperature in the preindustrial control simulations of the CMIP5 archive. Two distinct regimes are found. At subdecadal frequencies the surface temperature and the outgoing shortwave flux are in quadrature, while the outgoing longwave flux is linearly related to temperature and acts as a negative feedback on temperature perturbations. On longer time scales the outgoing shortwave and longwave fluxes are both linearly related to temperature, with the longwave continuing to act as a negative feedback and the shortwave acting as a positive feedback on temperature variability. In addition to the different phase relationships, the two regimes can also be seen in estimates of the coherence and of the frequency-dependent regression coefficients. The frequency-dependent regression coefficients for the total cloudy-sky flux on time scales of 2.5 to 3 years are found to be strongly (r² > 0.6) related to the models’ equilibrium climate sensitivities (ECSs), suggesting a potential “emergent constraint” for Earth’s ECS. However, O(100) years of data are required for this relationship to become robust. A simple model for Earth’s surface temperature variability and its relationship to the TOA fluxes is used to provide a physical interpretation of these results.Por paresapplication/pdfengAmerican Meteorological Societyurn:issn:0894-8755info:eu-repo/semantics/openAccessClimate sensitivityCloudsClimate variabilityMultidecadal variabilityTropical variabilityhttp://purl.org/pe-repo/ocde/ford#1.05.00http://purl.org/pe-repo/ocde/ford#1.05.09http://purl.org/pe-repo/ocde/ford#1.05.10What can the internal variability of CMIP5 models tell us about their climate sensitivity?info:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/8be319d4-da60-4a3b-a7c4-db46fb986f29/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILLutsko_&_Takahashi_2018_ Journal_of_Climate.pdf.jpgLutsko_&_Takahashi_2018_ Journal_of_Climate.pdf.jpgIM Thumbnailimage/jpeg136339https://repositorio.igp.gob.pe/bitstreams/3ee75570-aa54-41c9-a7bd-517a44fcf51f/download3c4a4b6eea8abba427edaad071a97168MD57TEXTlutsko2018.pdf.txtlutsko2018.pdf.txtExtracted texttext/plain84620https://repositorio.igp.gob.pe/bitstreams/0c1c9faa-e7f6-405a-8d02-285868308e4f/download962e1f666be38ef49608d39c71b94426MD54Lutsko_&_Takahashi_2018_ Journal_of_Climate.pdf.txtLutsko_&_Takahashi_2018_ Journal_of_Climate.pdf.txtExtracted texttext/plain72799https://repositorio.igp.gob.pe/bitstreams/5ae9a8b7-7d74-486b-9452-8e5f8f1e9f65/downloada7d93f0a27e9aa6b977b152b73b2f05bMD56ORIGINALLutsko_&_Takahashi_2018_ Journal_of_Climate.pdfLutsko_&_Takahashi_2018_ Journal_of_Climate.pdfapplication/pdf5721236https://repositorio.igp.gob.pe/bitstreams/54e81111-edeb-419e-8f1d-03ddee00cb8e/download42600ea35803fd15dbd7f2fea52b517dMD5520.500.12816/2982oai:repositorio.igp.gob.pe:20.500.12816/29822025-08-18 10:58:45.713open.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.945396
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).