Coherent radar imaging: signal processing and statistical properties

Descripción del Articulo

The recently developed technique for imaging radar scattering irregularities has opened a great scientific potential for ionospheric and atmospheric coherent radars. These images are obtained by processing the diffraction pattern of the backscattered electromagnetic field at a finite number of sampl...

Descripción completa

Detalles Bibliográficos
Autor: Woodman Pollitt, Ronald Francisco
Formato: artículo
Fecha de Publicación:1997
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/1775
Enlace del recurso:http://hdl.handle.net/20.500.12816/1775
https://doi.org/10.1029/97RS02017
Nivel de acceso:acceso abierto
Materia:Butler matrix
Coherent scattering
Discrete Fourier transforms
Electromagnetic fields
Radar
http://purl.org/pe-repo/ocde/ford#1.05.01
id IGPR_c38ceae4a140cc389c16c46d21477ad0
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/1775
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Coherent radar imaging: signal processing and statistical properties
title Coherent radar imaging: signal processing and statistical properties
spellingShingle Coherent radar imaging: signal processing and statistical properties
Woodman Pollitt, Ronald Francisco
Butler matrix
Coherent scattering
Discrete Fourier transforms
Electromagnetic fields
Radar
http://purl.org/pe-repo/ocde/ford#1.05.01
title_short Coherent radar imaging: signal processing and statistical properties
title_full Coherent radar imaging: signal processing and statistical properties
title_fullStr Coherent radar imaging: signal processing and statistical properties
title_full_unstemmed Coherent radar imaging: signal processing and statistical properties
title_sort Coherent radar imaging: signal processing and statistical properties
author Woodman Pollitt, Ronald Francisco
author_facet Woodman Pollitt, Ronald Francisco
author_role author
dc.contributor.author.fl_str_mv Woodman Pollitt, Ronald Francisco
dc.subject.none.fl_str_mv Butler matrix
Coherent scattering
Discrete Fourier transforms
Electromagnetic fields
Radar
topic Butler matrix
Coherent scattering
Discrete Fourier transforms
Electromagnetic fields
Radar
http://purl.org/pe-repo/ocde/ford#1.05.01
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.01
description The recently developed technique for imaging radar scattering irregularities has opened a great scientific potential for ionospheric and atmospheric coherent radars. These images are obtained by processing the diffraction pattern of the backscattered electromagnetic field at a finite number of sampling points on the ground. In this paper, we review the mathematical relationship between the statistical covariance of these samples, (fft), and that of the radiating object field to be imaged, (FFt), in a self-contained and comprehensive way. It is shown that these matrices are related in a linear way by fft) = aM(FFt)Ma*, where M is a discrete Fourier transform operator anda is a matrix operator representing the discrete and limited sampling of the field. The image, or brightness distribution, is the diagonal of (FFt). The equation can be linearly in verted only in special cases. In most cases, inversion algorithms which make use of a priori information or maximum entropy constraints must be used. A naive (biased) "image" can be estimated in a manner analogous to an optical caru.era by simply applying an inverse DFT operator to the sampled field f and evaluating the average power of the elements of the resulting vector F. Such a transformation can be obtained either digitally or in an analog way. For the latter we can use a Butler ma.trix consisting of properly interconnected transmission lines. The case of radar targets in the near field is included as a new contribution. This case involves an additional matrix operator b, which is an analog of an optical lens used to compensa.te for the curvature of the phase fronts of the backscattered field. This ''focusing" can be done after the statistics have been obtained. The formalism is derived for brightness distributions representing total powers. However, the derived expressions ha.ve been extended to include "color" images for ea.ch of the frequency components of the sampled time series. The frequency filtering is achieved by estimating spectra and cross spectra of the sample time series, in lieu of the power and cross correlations used in the derivation.
publishDate 1997
dc.date.accessioned.none.fl_str_mv 2018-07-09T19:42:08Z
dc.date.available.none.fl_str_mv 2018-07-09T19:42:08Z
dc.date.issued.fl_str_mv 1997-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Woodman, R. F. (1997). Coherent radar imaging: signal processing and statistical properties.==$Radio Science, 32$==(6), 2373-2391. https://doi.org/10.1029/97RS02017
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/1775
dc.identifier.journal.none.fl_str_mv Radio Science
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1029/97RS02017
identifier_str_mv Woodman, R. F. (1997). Coherent radar imaging: signal processing and statistical properties.==$Radio Science, 32$==(6), 2373-2391. https://doi.org/10.1029/97RS02017
index-oti2018
Radio Science
url http://hdl.handle.net/20.500.12816/1775
https://doi.org/10.1029/97RS02017
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:0048-6604
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licences/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licences/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/9e00b7ad-21ea-4d4b-affc-c70f1f85549f/download
https://repositorio.igp.gob.pe/bitstreams/9fdf14c6-e1f2-4129-88aa-adc849d87dfb/download
https://repositorio.igp.gob.pe/bitstreams/3486c0b9-6bdf-4613-b373-9ee7d7e70aca/download
https://repositorio.igp.gob.pe/bitstreams/b643e727-4e17-4cca-b290-ce4570715291/download
bitstream.checksum.fl_str_mv 8273b5b8efabef864a71c64ba57bf442
8a4605be74aa9ea9d79846c1fba20a33
c07841f13bcf19bd0b55e37abdb5d27c
7f5b903a193cc66524e06d8c0458e34a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618390776119296
spelling Woodman Pollitt, Ronald Francisco2018-07-09T19:42:08Z2018-07-09T19:42:08Z1997-11Woodman, R. F. (1997). Coherent radar imaging: signal processing and statistical properties.==$Radio Science, 32$==(6), 2373-2391. https://doi.org/10.1029/97RS02017index-oti2018http://hdl.handle.net/20.500.12816/1775Radio Sciencehttps://doi.org/10.1029/97RS02017The recently developed technique for imaging radar scattering irregularities has opened a great scientific potential for ionospheric and atmospheric coherent radars. These images are obtained by processing the diffraction pattern of the backscattered electromagnetic field at a finite number of sampling points on the ground. In this paper, we review the mathematical relationship between the statistical covariance of these samples, (fft), and that of the radiating object field to be imaged, (FFt), in a self-contained and comprehensive way. It is shown that these matrices are related in a linear way by fft) = aM(FFt)Ma*, where M is a discrete Fourier transform operator anda is a matrix operator representing the discrete and limited sampling of the field. The image, or brightness distribution, is the diagonal of (FFt). The equation can be linearly in verted only in special cases. In most cases, inversion algorithms which make use of a priori information or maximum entropy constraints must be used. A naive (biased) "image" can be estimated in a manner analogous to an optical caru.era by simply applying an inverse DFT operator to the sampled field f and evaluating the average power of the elements of the resulting vector F. Such a transformation can be obtained either digitally or in an analog way. For the latter we can use a Butler ma.trix consisting of properly interconnected transmission lines. The case of radar targets in the near field is included as a new contribution. This case involves an additional matrix operator b, which is an analog of an optical lens used to compensa.te for the curvature of the phase fronts of the backscattered field. This ''focusing" can be done after the statistics have been obtained. The formalism is derived for brightness distributions representing total powers. However, the derived expressions ha.ve been extended to include "color" images for ea.ch of the frequency components of the sampled time series. The frequency filtering is achieved by estimating spectra and cross spectra of the sample time series, in lieu of the power and cross correlations used in the derivation.Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:0048-6604info:eu-repo/semantics/openAccesshttps://creativecommons.org/licences/by/4.0/Butler matrixCoherent scatteringDiscrete Fourier transformsElectromagnetic fieldsRadarhttp://purl.org/pe-repo/ocde/ford#1.05.01Coherent radar imaging: signal processing and statistical propertiesinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALWoodmanRS32(2373)97.pdfWoodmanRS32(2373)97.pdfapplication/pdf5511946https://repositorio.igp.gob.pe/bitstreams/9e00b7ad-21ea-4d4b-affc-c70f1f85549f/download8273b5b8efabef864a71c64ba57bf442MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/9fdf14c6-e1f2-4129-88aa-adc849d87dfb/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILWoodmanRS32(2373)97.pdf.jpgWoodmanRS32(2373)97.pdf.jpgIM Thumbnailimage/jpeg100130https://repositorio.igp.gob.pe/bitstreams/3486c0b9-6bdf-4613-b373-9ee7d7e70aca/downloadc07841f13bcf19bd0b55e37abdb5d27cMD53TEXTWoodmanRS32(2373)97.pdf.txtWoodmanRS32(2373)97.pdf.txtExtracted texttext/plain19https://repositorio.igp.gob.pe/bitstreams/b643e727-4e17-4cca-b290-ce4570715291/download7f5b903a193cc66524e06d8c0458e34aMD5420.500.12816/1775oai:repositorio.igp.gob.pe:20.500.12816/17752024-10-12 22:18:46.073https://creativecommons.org/licences/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.439101
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).