Coherent radar imaging: signal processing and statistical properties
Descripción del Articulo
The recently developed technique for imaging radar scattering irregularities has opened a great scientific potential for ionospheric and atmospheric coherent radars. These images are obtained by processing the diffraction pattern of the backscattered electromagnetic field at a finite number of sampl...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 1997 |
Institución: | Instituto Geofísico del Perú |
Repositorio: | IGP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/1775 |
Enlace del recurso: | http://hdl.handle.net/20.500.12816/1775 https://doi.org/10.1029/97RS02017 |
Nivel de acceso: | acceso abierto |
Materia: | Butler matrix Coherent scattering Discrete Fourier transforms Electromagnetic fields Radar http://purl.org/pe-repo/ocde/ford#1.05.01 |
id |
IGPR_c38ceae4a140cc389c16c46d21477ad0 |
---|---|
oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/1775 |
network_acronym_str |
IGPR |
network_name_str |
IGP-Institucional |
repository_id_str |
4701 |
dc.title.none.fl_str_mv |
Coherent radar imaging: signal processing and statistical properties |
title |
Coherent radar imaging: signal processing and statistical properties |
spellingShingle |
Coherent radar imaging: signal processing and statistical properties Woodman Pollitt, Ronald Francisco Butler matrix Coherent scattering Discrete Fourier transforms Electromagnetic fields Radar http://purl.org/pe-repo/ocde/ford#1.05.01 |
title_short |
Coherent radar imaging: signal processing and statistical properties |
title_full |
Coherent radar imaging: signal processing and statistical properties |
title_fullStr |
Coherent radar imaging: signal processing and statistical properties |
title_full_unstemmed |
Coherent radar imaging: signal processing and statistical properties |
title_sort |
Coherent radar imaging: signal processing and statistical properties |
author |
Woodman Pollitt, Ronald Francisco |
author_facet |
Woodman Pollitt, Ronald Francisco |
author_role |
author |
dc.contributor.author.fl_str_mv |
Woodman Pollitt, Ronald Francisco |
dc.subject.none.fl_str_mv |
Butler matrix Coherent scattering Discrete Fourier transforms Electromagnetic fields Radar |
topic |
Butler matrix Coherent scattering Discrete Fourier transforms Electromagnetic fields Radar http://purl.org/pe-repo/ocde/ford#1.05.01 |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.05.01 |
description |
The recently developed technique for imaging radar scattering irregularities has opened a great scientific potential for ionospheric and atmospheric coherent radars. These images are obtained by processing the diffraction pattern of the backscattered electromagnetic field at a finite number of sampling points on the ground. In this paper, we review the mathematical relationship between the statistical covariance of these samples, (fft), and that of the radiating object field to be imaged, (FFt), in a self-contained and comprehensive way. It is shown that these matrices are related in a linear way by fft) = aM(FFt)Ma*, where M is a discrete Fourier transform operator anda is a matrix operator representing the discrete and limited sampling of the field. The image, or brightness distribution, is the diagonal of (FFt). The equation can be linearly in verted only in special cases. In most cases, inversion algorithms which make use of a priori information or maximum entropy constraints must be used. A naive (biased) "image" can be estimated in a manner analogous to an optical caru.era by simply applying an inverse DFT operator to the sampled field f and evaluating the average power of the elements of the resulting vector F. Such a transformation can be obtained either digitally or in an analog way. For the latter we can use a Butler ma.trix consisting of properly interconnected transmission lines. The case of radar targets in the near field is included as a new contribution. This case involves an additional matrix operator b, which is an analog of an optical lens used to compensa.te for the curvature of the phase fronts of the backscattered field. This ''focusing" can be done after the statistics have been obtained. The formalism is derived for brightness distributions representing total powers. However, the derived expressions ha.ve been extended to include "color" images for ea.ch of the frequency components of the sampled time series. The frequency filtering is achieved by estimating spectra and cross spectra of the sample time series, in lieu of the power and cross correlations used in the derivation. |
publishDate |
1997 |
dc.date.accessioned.none.fl_str_mv |
2018-07-09T19:42:08Z |
dc.date.available.none.fl_str_mv |
2018-07-09T19:42:08Z |
dc.date.issued.fl_str_mv |
1997-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.none.fl_str_mv |
Woodman, R. F. (1997). Coherent radar imaging: signal processing and statistical properties.==$Radio Science, 32$==(6), 2373-2391. https://doi.org/10.1029/97RS02017 |
dc.identifier.govdoc.none.fl_str_mv |
index-oti2018 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/1775 |
dc.identifier.journal.none.fl_str_mv |
Radio Science |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1029/97RS02017 |
identifier_str_mv |
Woodman, R. F. (1997). Coherent radar imaging: signal processing and statistical properties.==$Radio Science, 32$==(6), 2373-2391. https://doi.org/10.1029/97RS02017 index-oti2018 Radio Science |
url |
http://hdl.handle.net/20.500.12816/1775 https://doi.org/10.1029/97RS02017 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:0048-6604 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licences/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licences/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Geophysical Union |
publisher.none.fl_str_mv |
American Geophysical Union |
dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
instname_str |
Instituto Geofísico del Perú |
instacron_str |
IGP |
institution |
IGP |
reponame_str |
IGP-Institucional |
collection |
IGP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/9e00b7ad-21ea-4d4b-affc-c70f1f85549f/download https://repositorio.igp.gob.pe/bitstreams/9fdf14c6-e1f2-4129-88aa-adc849d87dfb/download https://repositorio.igp.gob.pe/bitstreams/3486c0b9-6bdf-4613-b373-9ee7d7e70aca/download https://repositorio.igp.gob.pe/bitstreams/b643e727-4e17-4cca-b290-ce4570715291/download |
bitstream.checksum.fl_str_mv |
8273b5b8efabef864a71c64ba57bf442 8a4605be74aa9ea9d79846c1fba20a33 c07841f13bcf19bd0b55e37abdb5d27c 7f5b903a193cc66524e06d8c0458e34a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
repository.mail.fl_str_mv |
biblio@igp.gob.pe |
_version_ |
1842618390776119296 |
spelling |
Woodman Pollitt, Ronald Francisco2018-07-09T19:42:08Z2018-07-09T19:42:08Z1997-11Woodman, R. F. (1997). Coherent radar imaging: signal processing and statistical properties.==$Radio Science, 32$==(6), 2373-2391. https://doi.org/10.1029/97RS02017index-oti2018http://hdl.handle.net/20.500.12816/1775Radio Sciencehttps://doi.org/10.1029/97RS02017The recently developed technique for imaging radar scattering irregularities has opened a great scientific potential for ionospheric and atmospheric coherent radars. These images are obtained by processing the diffraction pattern of the backscattered electromagnetic field at a finite number of sampling points on the ground. In this paper, we review the mathematical relationship between the statistical covariance of these samples, (fft), and that of the radiating object field to be imaged, (FFt), in a self-contained and comprehensive way. It is shown that these matrices are related in a linear way by fft) = aM(FFt)Ma*, where M is a discrete Fourier transform operator anda is a matrix operator representing the discrete and limited sampling of the field. The image, or brightness distribution, is the diagonal of (FFt). The equation can be linearly in verted only in special cases. In most cases, inversion algorithms which make use of a priori information or maximum entropy constraints must be used. A naive (biased) "image" can be estimated in a manner analogous to an optical caru.era by simply applying an inverse DFT operator to the sampled field f and evaluating the average power of the elements of the resulting vector F. Such a transformation can be obtained either digitally or in an analog way. For the latter we can use a Butler ma.trix consisting of properly interconnected transmission lines. The case of radar targets in the near field is included as a new contribution. This case involves an additional matrix operator b, which is an analog of an optical lens used to compensa.te for the curvature of the phase fronts of the backscattered field. This ''focusing" can be done after the statistics have been obtained. The formalism is derived for brightness distributions representing total powers. However, the derived expressions ha.ve been extended to include "color" images for ea.ch of the frequency components of the sampled time series. The frequency filtering is achieved by estimating spectra and cross spectra of the sample time series, in lieu of the power and cross correlations used in the derivation.Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:0048-6604info:eu-repo/semantics/openAccesshttps://creativecommons.org/licences/by/4.0/Butler matrixCoherent scatteringDiscrete Fourier transformsElectromagnetic fieldsRadarhttp://purl.org/pe-repo/ocde/ford#1.05.01Coherent radar imaging: signal processing and statistical propertiesinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALWoodmanRS32(2373)97.pdfWoodmanRS32(2373)97.pdfapplication/pdf5511946https://repositorio.igp.gob.pe/bitstreams/9e00b7ad-21ea-4d4b-affc-c70f1f85549f/download8273b5b8efabef864a71c64ba57bf442MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/9fdf14c6-e1f2-4129-88aa-adc849d87dfb/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILWoodmanRS32(2373)97.pdf.jpgWoodmanRS32(2373)97.pdf.jpgIM Thumbnailimage/jpeg100130https://repositorio.igp.gob.pe/bitstreams/3486c0b9-6bdf-4613-b373-9ee7d7e70aca/downloadc07841f13bcf19bd0b55e37abdb5d27cMD53TEXTWoodmanRS32(2373)97.pdf.txtWoodmanRS32(2373)97.pdf.txtExtracted texttext/plain19https://repositorio.igp.gob.pe/bitstreams/b643e727-4e17-4cca-b290-ce4570715291/download7f5b903a193cc66524e06d8c0458e34aMD5420.500.12816/1775oai:repositorio.igp.gob.pe:20.500.12816/17752024-10-12 22:18:46.073https://creativecommons.org/licences/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.439101 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).