Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru

Descripción del Articulo

The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated in this study, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) i...

Descripción completa

Detalles Bibliográficos
Autores: Moya Álvarez, Aldo Saturnino, Gálvez, José, Holguín, Andrea, Estevan, René, Kumar, Shailendra, Villalobos Puma, Elver Edmundo, Martínez Castro, Daniel, Silva Vidal, Yamina
Formato: artículo
Fecha de Publicación:2018
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/3921
Enlace del recurso:http://hdl.handle.net/20.500.12816/3921
https://doi.org/10.3390/atmos9090362
Nivel de acceso:acceso abierto
Materia:Central Andes
Extreme precipitation events
Synoptic conditions
Model configuration
Model verification
Mesoscale processes
Mantaro basin
WRF
LAMAR
http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.09
id IGPR_c37646ead36a4261fa62f3b4cc64936c
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/3921
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
title Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
spellingShingle Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
Moya Álvarez, Aldo Saturnino
Central Andes
Extreme precipitation events
Synoptic conditions
Model configuration
Model verification
Mesoscale processes
Mantaro basin
WRF
LAMAR
http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.09
title_short Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
title_full Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
title_fullStr Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
title_full_unstemmed Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
title_sort Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru
author Moya Álvarez, Aldo Saturnino
author_facet Moya Álvarez, Aldo Saturnino
Gálvez, José
Holguín, Andrea
Estevan, René
Kumar, Shailendra
Villalobos Puma, Elver Edmundo
Martínez Castro, Daniel
Silva Vidal, Yamina
author_role author
author2 Gálvez, José
Holguín, Andrea
Estevan, René
Kumar, Shailendra
Villalobos Puma, Elver Edmundo
Martínez Castro, Daniel
Silva Vidal, Yamina
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Moya Álvarez, Aldo Saturnino
Gálvez, José
Holguín, Andrea
Estevan, René
Kumar, Shailendra
Villalobos Puma, Elver Edmundo
Martínez Castro, Daniel
Silva Vidal, Yamina
dc.subject.none.fl_str_mv Central Andes
Extreme precipitation events
Synoptic conditions
Model configuration
Model verification
Mesoscale processes
Mantaro basin
WRF
LAMAR
topic Central Andes
Extreme precipitation events
Synoptic conditions
Model configuration
Model verification
Mesoscale processes
Mantaro basin
WRF
LAMAR
http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.09
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.09
description The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated in this study, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) images. The evaluation analyzes the synoptic conditions averaged over 40 extreme event cases, and considers model simulations organized in 4 nested domains. We first establish that atypical events in the region are those with more than 27 mm of rainfall per day when averaging over all the stations. More than 50% of the selected cases occurred during January, February, and April, with the most extreme occurring during February. The average synoptic conditions show negative geopotential anomalies and positive humidity anomalies in 700 and 500 hPa. At 200 hPa, the subtropical upper ridge or “Bolivian high” was present, with its northern divergent flank over the Mantaro basin. Simulation results show that the Weather Research and Forecasting (WRF) model underestimates rainfall totals in approximately 50–60% of cases, mainly in the south of the basin and in the extreme west along the mountain range. The analysis of two case studies shows that the underestimation by the model is probably due to three reasons: inability to generate convection in the upstream Amazon during early morning hours, apparently related to processes of larger scales; limitations on describing mesoscale processes that lead to vertical movements capable of producing extreme rainfall; and limitations on the microphysics scheme to generate heavy rainfall.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2019-01-03T17:04:09Z
dc.date.available.none.fl_str_mv 2019-01-03T17:04:09Z
dc.date.issued.fl_str_mv 2018-09-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Moya-Álvarez, A. S., Gálvez, J., Holguín, A., Estevan, R., Kumar, S., Villalobos, E., ... Silva, Y. (2018). Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru.==$Atmosphere, 9$==(9), 362. https://doi.org/10.3390/atmos9090362
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/3921
dc.identifier.journal.none.fl_str_mv Atmosphere
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/atmos9090362
identifier_str_mv Moya-Álvarez, A. S., Gálvez, J., Holguín, A., Estevan, R., Kumar, S., Villalobos, E., ... Silva, Y. (2018). Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru.==$Atmosphere, 9$==(9), 362. https://doi.org/10.3390/atmos9090362
index-oti2018
Atmosphere
url http://hdl.handle.net/20.500.12816/3921
https://doi.org/10.3390/atmos9090362
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2073-4433
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licences/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licences/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Andes centrales
Huancayo
Perú
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/c6f28e65-7b1b-4f16-8a82-c3d008f2a645/download
https://repositorio.igp.gob.pe/bitstreams/4ca11d8b-fd22-4241-82c4-28c708c7b1c3/download
https://repositorio.igp.gob.pe/bitstreams/9df10476-82dd-47a3-a1ff-b37209b6207e/download
https://repositorio.igp.gob.pe/bitstreams/b2cd3038-3554-4fab-811a-589188326162/download
bitstream.checksum.fl_str_mv dcf2804bb3b1abb5a962c6ccb7882c1a
8a4605be74aa9ea9d79846c1fba20a33
d93284bb02f8fdfb100218b2ff70de11
b3c55d782bdb9bf41a8f3e0207ca0a01
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618447974891520
spelling Moya Álvarez, Aldo SaturninoGálvez, JoséHolguín, AndreaEstevan, RenéKumar, ShailendraVillalobos Puma, Elver EdmundoMartínez Castro, DanielSilva Vidal, YaminaAndes centralesHuancayoPerú2019-01-03T17:04:09Z2019-01-03T17:04:09Z2018-09-18Moya-Álvarez, A. S., Gálvez, J., Holguín, A., Estevan, R., Kumar, S., Villalobos, E., ... Silva, Y. (2018). Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru.==$Atmosphere, 9$==(9), 362. https://doi.org/10.3390/atmos9090362index-oti2018http://hdl.handle.net/20.500.12816/3921Atmospherehttps://doi.org/10.3390/atmos9090362The ability of the WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to forecast extreme rainfall in the Central Andes of Peru is evaluated in this study, using observations from stations located in the Mantaro basin and GOES (Geostationary Operational Environmental Satellite) images. The evaluation analyzes the synoptic conditions averaged over 40 extreme event cases, and considers model simulations organized in 4 nested domains. We first establish that atypical events in the region are those with more than 27 mm of rainfall per day when averaging over all the stations. More than 50% of the selected cases occurred during January, February, and April, with the most extreme occurring during February. The average synoptic conditions show negative geopotential anomalies and positive humidity anomalies in 700 and 500 hPa. At 200 hPa, the subtropical upper ridge or “Bolivian high” was present, with its northern divergent flank over the Mantaro basin. Simulation results show that the Weather Research and Forecasting (WRF) model underestimates rainfall totals in approximately 50–60% of cases, mainly in the south of the basin and in the extreme west along the mountain range. The analysis of two case studies shows that the underestimation by the model is probably due to three reasons: inability to generate convection in the upstream Amazon during early morning hours, apparently related to processes of larger scales; limitations on describing mesoscale processes that lead to vertical movements capable of producing extreme rainfall; and limitations on the microphysics scheme to generate heavy rainfall.Por paresapplication/pdfengMDPIurn:issn:2073-4433info:eu-repo/semantics/openAccesshttps://creativecommons.org/licences/by/4.0/Central AndesExtreme precipitation eventsSynoptic conditionsModel configurationModel verificationMesoscale processesMantaro basinWRFLAMARhttp://purl.org/pe-repo/ocde/ford#1.05.00http://purl.org/pe-repo/ocde/ford#1.05.09Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peruinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALMoya_etal_atmosphere2018.pdfMoya_etal_atmosphere2018.pdfapplication/pdf1606179https://repositorio.igp.gob.pe/bitstreams/c6f28e65-7b1b-4f16-8a82-c3d008f2a645/downloaddcf2804bb3b1abb5a962c6ccb7882c1aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/4ca11d8b-fd22-4241-82c4-28c708c7b1c3/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILMoya_etal_atmosphere2018.pdf.jpgMoya_etal_atmosphere2018.pdf.jpgIM Thumbnailimage/jpeg87417https://repositorio.igp.gob.pe/bitstreams/9df10476-82dd-47a3-a1ff-b37209b6207e/downloadd93284bb02f8fdfb100218b2ff70de11MD53TEXTMoya_etal_atmosphere2018.pdf.txtMoya_etal_atmosphere2018.pdf.txtExtracted texttext/plain71323https://repositorio.igp.gob.pe/bitstreams/b2cd3038-3554-4fab-811a-589188326162/downloadb3c55d782bdb9bf41a8f3e0207ca0a01MD5420.500.12816/3921oai:repositorio.igp.gob.pe:20.500.12816/39212024-10-01 16:35:49.862https://creativecommons.org/licences/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.461011
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).