Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers

Descripción del Articulo

A latitudinal-distributed network of GPS receivers has been operating within Colombia, Peru and Chile with sufficient latitudinal span to measure the absolute total electron content (TEC) at both crests of the equatorial anomaly. The network also provides the latitudinal extension of GPS scintillati...

Descripción completa

Detalles Bibliográficos
Autores: Valladares, C. E., Villalobos, J., Sheehan, R., Hagan, M. P.
Formato: artículo
Fecha de Publicación:2004
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/1821
Enlace del recurso:http://hdl.handle.net/20.500.12816/1821
https://doi.org/10.5194/angeo-22-3155-2004
Nivel de acceso:acceso abierto
Materia:Ionosphere
Equatorial ionsphere
Ionospheric irregularities
Modeling and forecasting
http://purl.org/pe-repo/ocde/ford#1.05.01
id IGPR_912e07bdc3a25e36707654692f561b52
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/1821
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers
title Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers
spellingShingle Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers
Valladares, C. E.
Ionosphere
Equatorial ionsphere
Ionospheric irregularities
Modeling and forecasting
http://purl.org/pe-repo/ocde/ford#1.05.01
title_short Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers
title_full Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers
title_fullStr Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers
title_full_unstemmed Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers
title_sort Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers
author Valladares, C. E.
author_facet Valladares, C. E.
Villalobos, J.
Sheehan, R.
Hagan, M. P.
author_role author
author2 Villalobos, J.
Sheehan, R.
Hagan, M. P.
author2_role author
author
author
dc.contributor.author.fl_str_mv Valladares, C. E.
Villalobos, J.
Sheehan, R.
Hagan, M. P.
dc.subject.none.fl_str_mv Ionosphere
Equatorial ionsphere
Ionospheric irregularities
Modeling and forecasting
topic Ionosphere
Equatorial ionsphere
Ionospheric irregularities
Modeling and forecasting
http://purl.org/pe-repo/ocde/ford#1.05.01
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.01
description A latitudinal-distributed network of GPS receivers has been operating within Colombia, Peru and Chile with sufficient latitudinal span to measure the absolute total electron content (TEC) at both crests of the equatorial anomaly. The network also provides the latitudinal extension of GPS scintillations and TEC depletions. The GPS-based information has been supplemented with density profiles collected with the Jicamarca digisonde and JULIA power maps to investigate the background conditions of the nighttime ionosphere that prevail during the formation and the persistence of plasma depletions. This paper presents case-study events in which the latitudinal extension of GPS scintillations, the maximum latitude of TEC depletion detections, and the altitude extension of radar plumes are correlated with the location and extension of the equatorial anomaly. Then it shows the combined statistics of GPS scintillations, TEC depletions, TEC latitudinal profiles, and bottomside density profiles collected between September 2001 and June 2002. It is demonstrated that multiple sights of TEC depletions from different stations can be used to estimate the drift of the background plasma, the tilt of the plasma plumes, and in some cases even the approximate time and location of the depletion onset. This study corroborates the fact that TEC depletions and radar plumes coincide with intense levels of GPS scintillations. Bottomside radar traces do not seem to be associated with GPS scintillations. It is demonstrated that scintillations/depletions can occur when the TEC latitude profiles are symmetric, asymmetric or highly asymmetric; this is during the absence of one crest. Comparison of the location of the northern crest of the equatorial anomaly and the maximum latitude of scintillations reveals that for 90% of the days, scintillations are confined within the boundaries of the 50% decay limit of the anomaly crests. The crests of the anomaly are the regions where the most intense GPS scintillations and the deepest TEC depletions are encountered. In accord with early results, we observe that GPS scintillations/TEC depletions mainly occur when the altitude of the magnetic equator F-region is above 500km. Nevertheless, in many instances GPS scintillations and TEC depletions are observed to exist when the F-layer is well below 500km or to persist when the F-layer undergoes its typical nighttime descent. Close inspection of the TEC profiles during scintillations/depletions events that occur when the equatorial F-layer peak is below 500km altitude reveals that on these occasions the ratio of the crest-to-equator TEC is above 2, and the crests are displaced 10° or more from the magnetic equator. When the equatorial F-layer is above 500km, neither of the two requirements is needed, as the flux tube seems to be inherently unstable. We discuss these findings in terms of the Rayleigh-Taylor instability (RTI) mechanism for flux-tube integrated quantities. We advance the idea that the seeming control that the reverse fountain effect exerts on inhibiting or suppressing GPS scintillations may be related to the redistribution of the density and plasma transport from the crests of the anomaly toward the equatorial region and then to much lower altitudes, and the simultaneous decrease of the F-region altitude. These two effects originate a decrease in the crest/trough ratio and a reduction of the crests separation, making the whole flux tube more stable to the RTI. The correspondence between crest separation, altitude of the equatorial F-region, the onset of depletions, and the altitude (latitude) extension of plumes (GPS scintillations) can be used to track the fate of the density structures.
publishDate 2004
dc.date.accessioned.none.fl_str_mv 2018-07-13T14:38:10Z
dc.date.available.none.fl_str_mv 2018-07-13T14:38:10Z
dc.date.issued.fl_str_mv 2004-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Valladares, C. E., Villalobos, J., Sheehan, R., & Hagan, M. P. (2004). Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers.==$Annales Geophysicae, 22$==(9), 3155-3175. https://doi.org/10.5194/angeo-22-3155-2004
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/1821
dc.identifier.journal.none.fl_str_mv Annales Geophysicae
dc.identifier.doi.none.fl_str_mv https://doi.org/10.5194/angeo-22-3155-2004
identifier_str_mv Valladares, C. E., Villalobos, J., Sheehan, R., & Hagan, M. P. (2004). Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers.==$Annales Geophysicae, 22$==(9), 3155-3175. https://doi.org/10.5194/angeo-22-3155-2004
Annales Geophysicae
url http://hdl.handle.net/20.500.12816/1821
https://doi.org/10.5194/angeo-22-3155-2004
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:0992-7689
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licences/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licences/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv European Geosciences Union
publisher.none.fl_str_mv European Geosciences Union
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/f05d26d6-4424-4bf7-9649-f983726c168f/download
https://repositorio.igp.gob.pe/bitstreams/595d2ae9-efb0-460f-b8e9-8357fee2ff2a/download
https://repositorio.igp.gob.pe/bitstreams/044f40b2-4944-45d5-9c61-a0b7dec20a02/download
https://repositorio.igp.gob.pe/bitstreams/3539b5b1-2262-455a-97ad-08ae40222d4d/download
bitstream.checksum.fl_str_mv 66777318fe0c80c0489e4d0a03cfb85a
8a4605be74aa9ea9d79846c1fba20a33
49a8c39531c7a6aecdaf46f16350a85a
63d84731f885ea0a41a67de90a7ddcb0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618130928500736
spelling Valladares, C. E.Villalobos, J.Sheehan, R.Hagan, M. P.2018-07-13T14:38:10Z2018-07-13T14:38:10Z2004-09Valladares, C. E., Villalobos, J., Sheehan, R., & Hagan, M. P. (2004). Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers.==$Annales Geophysicae, 22$==(9), 3155-3175. https://doi.org/10.5194/angeo-22-3155-2004http://hdl.handle.net/20.500.12816/1821Annales Geophysicaehttps://doi.org/10.5194/angeo-22-3155-2004A latitudinal-distributed network of GPS receivers has been operating within Colombia, Peru and Chile with sufficient latitudinal span to measure the absolute total electron content (TEC) at both crests of the equatorial anomaly. The network also provides the latitudinal extension of GPS scintillations and TEC depletions. The GPS-based information has been supplemented with density profiles collected with the Jicamarca digisonde and JULIA power maps to investigate the background conditions of the nighttime ionosphere that prevail during the formation and the persistence of plasma depletions. This paper presents case-study events in which the latitudinal extension of GPS scintillations, the maximum latitude of TEC depletion detections, and the altitude extension of radar plumes are correlated with the location and extension of the equatorial anomaly. Then it shows the combined statistics of GPS scintillations, TEC depletions, TEC latitudinal profiles, and bottomside density profiles collected between September 2001 and June 2002. It is demonstrated that multiple sights of TEC depletions from different stations can be used to estimate the drift of the background plasma, the tilt of the plasma plumes, and in some cases even the approximate time and location of the depletion onset. This study corroborates the fact that TEC depletions and radar plumes coincide with intense levels of GPS scintillations. Bottomside radar traces do not seem to be associated with GPS scintillations. It is demonstrated that scintillations/depletions can occur when the TEC latitude profiles are symmetric, asymmetric or highly asymmetric; this is during the absence of one crest. Comparison of the location of the northern crest of the equatorial anomaly and the maximum latitude of scintillations reveals that for 90% of the days, scintillations are confined within the boundaries of the 50% decay limit of the anomaly crests. The crests of the anomaly are the regions where the most intense GPS scintillations and the deepest TEC depletions are encountered. In accord with early results, we observe that GPS scintillations/TEC depletions mainly occur when the altitude of the magnetic equator F-region is above 500km. Nevertheless, in many instances GPS scintillations and TEC depletions are observed to exist when the F-layer is well below 500km or to persist when the F-layer undergoes its typical nighttime descent. Close inspection of the TEC profiles during scintillations/depletions events that occur when the equatorial F-layer peak is below 500km altitude reveals that on these occasions the ratio of the crest-to-equator TEC is above 2, and the crests are displaced 10° or more from the magnetic equator. When the equatorial F-layer is above 500km, neither of the two requirements is needed, as the flux tube seems to be inherently unstable. We discuss these findings in terms of the Rayleigh-Taylor instability (RTI) mechanism for flux-tube integrated quantities. We advance the idea that the seeming control that the reverse fountain effect exerts on inhibiting or suppressing GPS scintillations may be related to the redistribution of the density and plasma transport from the crests of the anomaly toward the equatorial region and then to much lower altitudes, and the simultaneous decrease of the F-region altitude. These two effects originate a decrease in the crest/trough ratio and a reduction of the crests separation, making the whole flux tube more stable to the RTI. The correspondence between crest separation, altitude of the equatorial F-region, the onset of depletions, and the altitude (latitude) extension of plumes (GPS scintillations) can be used to track the fate of the density structures.Por paresapplication/pdfengEuropean Geosciences Unionurn:issn:0992-7689info:eu-repo/semantics/openAccesshttps://creativecommons.org/licences/by/4.0/IonosphereEquatorial ionsphereIonospheric irregularitiesModeling and forecastinghttp://purl.org/pe-repo/ocde/ford#1.05.01Latitudinal extension of low-latitude scintillations measured with a network of GPS receiversinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALValladaresAnnGeo22(3155-3175)04.pdfValladaresAnnGeo22(3155-3175)04.pdfapplication/pdf3251263https://repositorio.igp.gob.pe/bitstreams/f05d26d6-4424-4bf7-9649-f983726c168f/download66777318fe0c80c0489e4d0a03cfb85aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/595d2ae9-efb0-460f-b8e9-8357fee2ff2a/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILValladaresAnnGeo22(3155-3175)04.pdf.jpgValladaresAnnGeo22(3155-3175)04.pdf.jpgIM Thumbnailimage/jpeg102689https://repositorio.igp.gob.pe/bitstreams/044f40b2-4944-45d5-9c61-a0b7dec20a02/download49a8c39531c7a6aecdaf46f16350a85aMD53TEXTValladaresAnnGeo22(3155-3175)04.pdf.txtValladaresAnnGeo22(3155-3175)04.pdf.txtExtracted texttext/plain97221https://repositorio.igp.gob.pe/bitstreams/3539b5b1-2262-455a-97ad-08ae40222d4d/download63d84731f885ea0a41a67de90a7ddcb0MD5420.500.12816/1821oai:repositorio.igp.gob.pe:20.500.12816/18212024-10-12 22:18:20.118https://creativecommons.org/licences/by/4.0/info:eu-repo/semantics/openAccessrestrictedhttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.90587
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).