Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identification

Descripción del Articulo

MST (mesosphere, stratosphere, troposphere) radar observations at Jicamarca use four antenna beams, one vertical, others tilted to the east, west, and south, to detect the scattered pulse returns from mesospheric heights (∼55–85 km). Doppler shifts of scattered returns, estimated by fitting the obse...

Descripción completa

Detalles Bibliográficos
Autores: Lee, Kiwook, Kudeki, Erhan, Reyes, Pablo M., Lehmacher, Gerald A., Milla, Marco
Formato: artículo
Fecha de Publicación:2019
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/4911
Enlace del recurso:http://hdl.handle.net/20.500.12816/4911
https://doi.org/10.1029/2019RS006892
Nivel de acceso:acceso abierto
Materia:Radar
Mesoespheric winds
Mesosphere
Stratosphere
Troposphere
http://purl.org/pe-repo/ocde/ford#1.05.01
id IGPR_456762cebb2388a0c4fefb64cbef69b2
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/4911
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identification
title Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identification
spellingShingle Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identification
Lee, Kiwook
Radar
Mesoespheric winds
Mesosphere
Stratosphere
Troposphere
http://purl.org/pe-repo/ocde/ford#1.05.01
title_short Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identification
title_full Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identification
title_fullStr Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identification
title_full_unstemmed Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identification
title_sort Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identification
author Lee, Kiwook
author_facet Lee, Kiwook
Kudeki, Erhan
Reyes, Pablo M.
Lehmacher, Gerald A.
Milla, Marco
author_role author
author2 Kudeki, Erhan
Reyes, Pablo M.
Lehmacher, Gerald A.
Milla, Marco
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Lee, Kiwook
Kudeki, Erhan
Reyes, Pablo M.
Lehmacher, Gerald A.
Milla, Marco
dc.subject.none.fl_str_mv Radar
Mesoespheric winds
Mesosphere
Stratosphere
Troposphere
topic Radar
Mesoespheric winds
Mesosphere
Stratosphere
Troposphere
http://purl.org/pe-repo/ocde/ford#1.05.01
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.01
description MST (mesosphere, stratosphere, troposphere) radar observations at Jicamarca use four antenna beams, one vertical, others tilted to the east, west, and south, to detect the scattered pulse returns from mesospheric heights (∼55–85 km). Doppler shifts of scattered returns, estimated by fitting the observed signal spectra by generalized Gaussian‐shaped models, are used to estimate mesospheric wind vectors. At some heights two spectral peaks are seen in which case a dual‐peaked model is fitted the spectrum. Dual peaks are more common for returns from the east and west tilted beams with stronger sidelobes. When sidelobe‐caused peaks are dominant and are mistaken for mainlobe peaks, wind errors occur since the estimation algorithm uses the pointing angle of the mainbeam. To avoid such errors we implemented a clustering‐based machine learning procedure to identify and use only the mainbeam components of dual peaked spectra. Wind estimates made before and after the procedure will be presented to assess the improvements achieved by this new method to be used routinely in Jicamarca mesospheric wind measurements and applied to past MST data.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2021-02-15T17:34:38Z
dc.date.available.none.fl_str_mv 2021-02-15T17:34:38Z
dc.date.issued.fl_str_mv 2019-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Lee, K., Kudeki, E., Reyes, P. M., Lehmacher, G. A. & Milla, M. (2019). Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identification.==$Radio Science, 54$==(12), 1222-1239. https://doi.org/10.1029/2019RS006892
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/4911
dc.identifier.journal.none.fl_str_mv Radio Science
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1029/2019RS006892
identifier_str_mv Lee, K., Kudeki, E., Reyes, P. M., Lehmacher, G. A. & Milla, M. (2019). Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identification.==$Radio Science, 54$==(12), 1222-1239. https://doi.org/10.1029/2019RS006892
index-oti2018
Radio Science
url http://hdl.handle.net/20.500.12816/4911
https://doi.org/10.1029/2019RS006892
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:0048-6604
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Jicamarca
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/4ee26346-d670-4ba8-b0d6-2e4404b97848/download
https://repositorio.igp.gob.pe/bitstreams/ae71cc67-673e-470a-8248-64cb438c7135/download
https://repositorio.igp.gob.pe/bitstreams/9a3fab80-dc8c-4df2-8cb1-83557a645284/download
https://repositorio.igp.gob.pe/bitstreams/115292cb-cf91-44f1-a2dc-a9adfbab984d/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
404b226d7bdd4853a2c77f2e111d8fd0
b5bfa20d13fe1faed0a65184948bbf01
3d7061327c8c07c634f85123732abc1d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618634949623808
spelling Lee, KiwookKudeki, ErhanReyes, Pablo M.Lehmacher, Gerald A.Milla, MarcoJicamarca2021-02-15T17:34:38Z2021-02-15T17:34:38Z2019-12Lee, K., Kudeki, E., Reyes, P. M., Lehmacher, G. A. & Milla, M. (2019). Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identification.==$Radio Science, 54$==(12), 1222-1239. https://doi.org/10.1029/2019RS006892index-oti2018http://hdl.handle.net/20.500.12816/4911Radio Sciencehttps://doi.org/10.1029/2019RS006892MST (mesosphere, stratosphere, troposphere) radar observations at Jicamarca use four antenna beams, one vertical, others tilted to the east, west, and south, to detect the scattered pulse returns from mesospheric heights (∼55–85 km). Doppler shifts of scattered returns, estimated by fitting the observed signal spectra by generalized Gaussian‐shaped models, are used to estimate mesospheric wind vectors. At some heights two spectral peaks are seen in which case a dual‐peaked model is fitted the spectrum. Dual peaks are more common for returns from the east and west tilted beams with stronger sidelobes. When sidelobe‐caused peaks are dominant and are mistaken for mainlobe peaks, wind errors occur since the estimation algorithm uses the pointing angle of the mainbeam. To avoid such errors we implemented a clustering‐based machine learning procedure to identify and use only the mainbeam components of dual peaked spectra. Wind estimates made before and after the procedure will be presented to assess the improvements achieved by this new method to be used routinely in Jicamarca mesospheric wind measurements and applied to past MST data.Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:0048-6604info:eu-repo/semantics/openAccessRadarMesoespheric windsMesosphereStratosphereTropospherehttp://purl.org/pe-repo/ocde/ford#1.05.01Mesospheric wind estimation with the Jicamarca MST radar using spectral mainlobe identificationinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/4ee26346-d670-4ba8-b0d6-2e4404b97848/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTLee_et_al_2019_Radio-Science.pdf.txtLee_et_al_2019_Radio-Science.pdf.txtExtracted texttext/plain53335https://repositorio.igp.gob.pe/bitstreams/ae71cc67-673e-470a-8248-64cb438c7135/download404b226d7bdd4853a2c77f2e111d8fd0MD54ORIGINALLee_et_al_2019_Radio-Science.pdfapplication/pdf110184225https://repositorio.igp.gob.pe/bitstreams/9a3fab80-dc8c-4df2-8cb1-83557a645284/downloadb5bfa20d13fe1faed0a65184948bbf01MD57THUMBNAILLee_et_al_2019_Radio-Science.pdf.jpgLee_et_al_2019_Radio-Science.pdf.jpgIM Thumbnailimage/jpeg107399https://repositorio.igp.gob.pe/bitstreams/115292cb-cf91-44f1-a2dc-a9adfbab984d/download3d7061327c8c07c634f85123732abc1dMD5620.500.12816/4911oai:repositorio.igp.gob.pe:20.500.12816/49112025-08-21 11:17:47.551open.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.463173
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).