Performance of Regional Climate Model Precipitation Simulations Over the Terrain-Complex Andes-Amazon Transition Region
Descripción del Articulo
Regional climate models (RCMs) are widely used to assess future impacts associated with climate change at regional and local scales. RCMs must represent relevant climate variables in the present-day climate to be considered fit-for-purpose for impact assessment. This condition is particularly diffic...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Instituto Geofísico del Perú |
Repositorio: | IGP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/5594 |
Enlace del recurso: | http://hdl.handle.net/20.500.12816/5594 https://doi.org/10.1029/2023JD038618 |
Nivel de acceso: | acceso abierto |
Materia: | Rainfall hotspots South America CORDEX Model evaluation Climate modeling Precipitation Climatology https://purl.org/pe-repo/ocde/ford#1.05.09 |
id |
IGPR_44e5850886de18ac21e318726307c2bb |
---|---|
oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/5594 |
network_acronym_str |
IGPR |
network_name_str |
IGP-Institucional |
repository_id_str |
4701 |
dc.title.none.fl_str_mv |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain-Complex Andes-Amazon Transition Region |
title |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain-Complex Andes-Amazon Transition Region |
spellingShingle |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain-Complex Andes-Amazon Transition Region Gutierrez, Ricardo A. Rainfall hotspots South America CORDEX Model evaluation Climate modeling Precipitation Climatology https://purl.org/pe-repo/ocde/ford#1.05.09 |
title_short |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain-Complex Andes-Amazon Transition Region |
title_full |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain-Complex Andes-Amazon Transition Region |
title_fullStr |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain-Complex Andes-Amazon Transition Region |
title_full_unstemmed |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain-Complex Andes-Amazon Transition Region |
title_sort |
Performance of Regional Climate Model Precipitation Simulations Over the Terrain-Complex Andes-Amazon Transition Region |
author |
Gutierrez, Ricardo A. |
author_facet |
Gutierrez, Ricardo A. Junquas, Clémentine Armijos Cardenas, Elisa Natalia Sörensson, Anna A. Espinoza, Jhan-Carlo |
author_role |
author |
author2 |
Junquas, Clémentine Armijos Cardenas, Elisa Natalia Sörensson, Anna A. Espinoza, Jhan-Carlo |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Gutierrez, Ricardo A. Junquas, Clémentine Armijos Cardenas, Elisa Natalia Sörensson, Anna A. Espinoza, Jhan-Carlo |
dc.subject.none.fl_str_mv |
Rainfall hotspots South America CORDEX Model evaluation Climate modeling Precipitation Climatology |
topic |
Rainfall hotspots South America CORDEX Model evaluation Climate modeling Precipitation Climatology https://purl.org/pe-repo/ocde/ford#1.05.09 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.09 |
description |
Regional climate models (RCMs) are widely used to assess future impacts associated with climate change at regional and local scales. RCMs must represent relevant climate variables in the present-day climate to be considered fit-for-purpose for impact assessment. This condition is particularly difficult to meet over complex regions such as the Andes-Amazon transition region, where the Andean topography and abundance of tropical rainfall regimes remain a challenge for numerical climate models. In this study, we evaluate the ability of 30 regional climate simulations (6 RCMs driven by 10 global climate models) to reproduce historical (1981–2005) rainfall climatology and temporal variability over the Andes-Amazon transition region. We assess spatio-temporal features such as spatial distribution of rainfall, focusing on the orographic effects over the Andes-Amazon “rainfall hotspots” region, and seasonal and interannual precipitation variability. The Eta RCM exhibits the highest spatial correlation (up to 0.6) and accurately reproduces mean annual precipitation and orographic precipitation patterns across the region, while some other RCMs have good performances at specific locations. Most RCMs simulate a wet bias over the highlands, particularly at the eastern Andean summits, as evidenced by the 100%–2,500% overestimations of precipitation in these regions. Annual cycles are well represented by most RCMs, but peak seasons are exaggerated, especially at equatorial locations. No RCM is particularly skillful in reproducing the interannual variability patterns. Results highlight skills and weaknesses of the different regional climate simulations, and can assist in the selection of regional climate simulations for impact studies in the Andes-Amazon transition zone. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-11T19:55:22Z |
dc.date.available.none.fl_str_mv |
2024-09-11T19:55:22Z |
dc.date.issued.fl_str_mv |
2024-01-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.none.fl_str_mv |
Gutierrez, R. A., Junquas, C., Armijos, E., Sörensson, A. A., & Espinoza, J. (2024). Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region.==$Journal of Geophysical Research: Atmospheres, 129$==(1), e2023JD038618. https://doi.org/10.1029/2023JD038618 |
dc.identifier.govdoc.none.fl_str_mv |
index-oti2018 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/5594 |
dc.identifier.journal.none.fl_str_mv |
Journal of Geophysical Research: Atmospheres |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1029/2023JD038618 |
identifier_str_mv |
Gutierrez, R. A., Junquas, C., Armijos, E., Sörensson, A. A., & Espinoza, J. (2024). Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region.==$Journal of Geophysical Research: Atmospheres, 129$==(1), e2023JD038618. https://doi.org/10.1029/2023JD038618 index-oti2018 Journal of Geophysical Research: Atmospheres |
url |
http://hdl.handle.net/20.500.12816/5594 https://doi.org/10.1029/2023JD038618 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2169-8996 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Geophysical Union |
publisher.none.fl_str_mv |
American Geophysical Union |
dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
instname_str |
Instituto Geofísico del Perú |
instacron_str |
IGP |
institution |
IGP |
reponame_str |
IGP-Institucional |
collection |
IGP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/1fdc9c08-fa27-4c8f-92b4-be69ec953882/download https://repositorio.igp.gob.pe/bitstreams/5b9f3048-a3da-402e-9b5a-0cfee75b7a6c/download https://repositorio.igp.gob.pe/bitstreams/cf046f66-1a06-490f-986f-e82bd96fc09a/download https://repositorio.igp.gob.pe/bitstreams/5a7f1815-8456-453b-9f94-24c5e3d5a7c1/download |
bitstream.checksum.fl_str_mv |
bb9bdc0b3349e4284e09149f943790b4 ba9e00e3c6aa17ef85103c9eeddd5883 0b8d2ee8a2c99ba141b19894c3ce0fa2 d432206e3d71d3afb9dba63ac5b1fa1a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
repository.mail.fl_str_mv |
biblio@igp.gob.pe |
_version_ |
1842618519261282304 |
spelling |
Gutierrez, Ricardo A.Junquas, ClémentineArmijos Cardenas, Elisa NataliaSörensson, Anna A.Espinoza, Jhan-Carlo2024-09-11T19:55:22Z2024-09-11T19:55:22Z2024-01-06Gutierrez, R. A., Junquas, C., Armijos, E., Sörensson, A. A., & Espinoza, J. (2024). Performance of Regional Climate Model Precipitation Simulations Over the Terrain‐Complex Andes‐Amazon Transition Region.==$Journal of Geophysical Research: Atmospheres, 129$==(1), e2023JD038618. https://doi.org/10.1029/2023JD038618index-oti2018http://hdl.handle.net/20.500.12816/5594Journal of Geophysical Research: Atmosphereshttps://doi.org/10.1029/2023JD038618Regional climate models (RCMs) are widely used to assess future impacts associated with climate change at regional and local scales. RCMs must represent relevant climate variables in the present-day climate to be considered fit-for-purpose for impact assessment. This condition is particularly difficult to meet over complex regions such as the Andes-Amazon transition region, where the Andean topography and abundance of tropical rainfall regimes remain a challenge for numerical climate models. In this study, we evaluate the ability of 30 regional climate simulations (6 RCMs driven by 10 global climate models) to reproduce historical (1981–2005) rainfall climatology and temporal variability over the Andes-Amazon transition region. We assess spatio-temporal features such as spatial distribution of rainfall, focusing on the orographic effects over the Andes-Amazon “rainfall hotspots” region, and seasonal and interannual precipitation variability. The Eta RCM exhibits the highest spatial correlation (up to 0.6) and accurately reproduces mean annual precipitation and orographic precipitation patterns across the region, while some other RCMs have good performances at specific locations. Most RCMs simulate a wet bias over the highlands, particularly at the eastern Andean summits, as evidenced by the 100%–2,500% overestimations of precipitation in these regions. Annual cycles are well represented by most RCMs, but peak seasons are exaggerated, especially at equatorial locations. No RCM is particularly skillful in reproducing the interannual variability patterns. Results highlight skills and weaknesses of the different regional climate simulations, and can assist in the selection of regional climate simulations for impact studies in the Andes-Amazon transition zone.Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:2169-8996info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Rainfall hotspotsSouth AmericaCORDEXModel evaluationClimate modelingPrecipitationClimatologyhttps://purl.org/pe-repo/ocde/ford#1.05.09Performance of Regional Climate Model Precipitation Simulations Over the Terrain-Complex Andes-Amazon Transition Regioninfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/1fdc9c08-fa27-4c8f-92b4-be69ec953882/downloadbb9bdc0b3349e4284e09149f943790b4MD51ORIGINALGutierrez_et_al_2024_JGR_Atmospheres.pdfGutierrez_et_al_2024_JGR_Atmospheres.pdfapplication/pdf8710480https://repositorio.igp.gob.pe/bitstreams/5b9f3048-a3da-402e-9b5a-0cfee75b7a6c/downloadba9e00e3c6aa17ef85103c9eeddd5883MD52TEXTGutierrez_et_al_2024_JGR_Atmospheres.pdf.txtGutierrez_et_al_2024_JGR_Atmospheres.pdf.txtExtracted texttext/plain101043https://repositorio.igp.gob.pe/bitstreams/cf046f66-1a06-490f-986f-e82bd96fc09a/download0b8d2ee8a2c99ba141b19894c3ce0fa2MD53THUMBNAILGutierrez_et_al_2024_JGR_Atmospheres.pdf.jpgGutierrez_et_al_2024_JGR_Atmospheres.pdf.jpgGenerated Thumbnailimage/jpeg48129https://repositorio.igp.gob.pe/bitstreams/5a7f1815-8456-453b-9f94-24c5e3d5a7c1/downloadd432206e3d71d3afb9dba63ac5b1fa1aMD5420.500.12816/5594oai:repositorio.igp.gob.pe:20.500.12816/55942024-10-01 16:35:50.285https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0IG93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLCB0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZyB0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sIGluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlIHN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yIHB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZSB0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQgdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uIGFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LCB5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZSBjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCBzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkIHdpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRCBCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUgRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSCBDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZSBzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMgbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.887938 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).