New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century

Descripción del Articulo

The water disponibility of Lake Titicaca is important for local ecosystems, domestic water, industry, fishing, agriculture, and tourism in Peru and Bolivia. However, the water level variability in Lake Titicaca (LTWL) still needs to be understood. The fluctuations of LTWL during the 1921–2018 period...

Descripción completa

Detalles Bibliográficos
Autores: Sulca Jota, Juan Carlos, Apaéstegui Campos, James Emiliano, Tacza, José
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/5505
Enlace del recurso:http://hdl.handle.net/20.500.12816/5505
https://doi.org/10.3389/fclim.2023.1325224
Nivel de acceso:acceso abierto
Materia:Lake Titicaca water level
High-and low-frequency variability
Multiple linear regression models
Pacific Decadal Oscillation
Atlantic Multidecadal Oscillation
South Atlantic Ocean
Bolivian High and Nordeste Low (BH–NL) system
https://purl.org/pe-repo/ocde/ford#1.05.09
https://purl.org/pe-repo/ocde/ford#1.05.10
id IGPR_14deb0ae7719ff8bbeaac4ac7d24d77f
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/5505
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century
title New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century
spellingShingle New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century
Sulca Jota, Juan Carlos
Lake Titicaca water level
High-and low-frequency variability
Multiple linear regression models
Pacific Decadal Oscillation
Atlantic Multidecadal Oscillation
South Atlantic Ocean
Bolivian High and Nordeste Low (BH–NL) system
https://purl.org/pe-repo/ocde/ford#1.05.09
https://purl.org/pe-repo/ocde/ford#1.05.10
title_short New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century
title_full New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century
title_fullStr New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century
title_full_unstemmed New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century
title_sort New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century
author Sulca Jota, Juan Carlos
author_facet Sulca Jota, Juan Carlos
Apaéstegui Campos, James Emiliano
Tacza, José
author_role author
author2 Apaéstegui Campos, James Emiliano
Tacza, José
author2_role author
author
dc.contributor.author.fl_str_mv Sulca Jota, Juan Carlos
Apaéstegui Campos, James Emiliano
Tacza, José
dc.subject.none.fl_str_mv Lake Titicaca water level
High-and low-frequency variability
Multiple linear regression models
Pacific Decadal Oscillation
Atlantic Multidecadal Oscillation
South Atlantic Ocean
Bolivian High and Nordeste Low (BH–NL) system
topic Lake Titicaca water level
High-and low-frequency variability
Multiple linear regression models
Pacific Decadal Oscillation
Atlantic Multidecadal Oscillation
South Atlantic Ocean
Bolivian High and Nordeste Low (BH–NL) system
https://purl.org/pe-repo/ocde/ford#1.05.09
https://purl.org/pe-repo/ocde/ford#1.05.10
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.09
https://purl.org/pe-repo/ocde/ford#1.05.10
description The water disponibility of Lake Titicaca is important for local ecosystems, domestic water, industry, fishing, agriculture, and tourism in Peru and Bolivia. However, the water level variability in Lake Titicaca (LTWL) still needs to be understood. The fluctuations of LTWL during the 1921–2018 period are investigated using continuous wavelet techniques on high- and low-pass filters of monthly time series, ERA-20C reanalysis, sea surface temperature (SST), and water level. We also built multiple linear regression (MLR) models based on SST indices to identify the main drivers of the LTWL variability. LTWL features annual (12 months), biennial (22–28 months), interannual (80–108 months), decadal (12.75–14.06 years), interdecadal (24.83–26.50 years), and multidecadal (30–65 years) signals. The high- and low-frequency components of the LTWL are triggered by the humidity transport from the lowland toward the Lake Titicaca basin, although different forcings could cause it. The biennial band is associated with SST anomalies over the southeastern tropical Atlantic Ocean that strengthen the Bolivian High-Nordeste Low system. The interannual band is associated with the southern South Atlantic SST anomalies, which modulate the position of the Bolivian High. According to the MLR models, the decadal and interdecadal components of the LTWL can be explained by the linear combination of the decadal and interdecadal variability of the Pacific and Atlantic SST anomalies (r > 0.83, p < 0.05). In contrast, the multidecadal component of the LTWL is driven by the multidecadal component of the North Atlantic SST anomalies (AMO) and the southern South Atlantic SST anomalies. Moreover, the monthly time series of LTWL exhibits four breakpoints. The signs of the first four trends follow the change of phases of the multidecadal component of LTWL, while the fifth trend is zero attributable to the diminished amplitude of the interdecadal component of LTWL.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-18T21:44:50Z
dc.date.available.none.fl_str_mv 2024-01-18T21:44:50Z
dc.date.issued.fl_str_mv 2024-01-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Sulca, J., Apaéstegui, J., & Tacza, J. (2024). New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century.==$Frontiers in Climate, 5,$==1325224. https://doi.org/10.3389/fclim.2023.1325224
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/5505
dc.identifier.journal.none.fl_str_mv Frontiers in Climate
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3389/fclim.2023.1325224
identifier_str_mv Sulca, J., Apaéstegui, J., & Tacza, J. (2024). New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century.==$Frontiers in Climate, 5,$==1325224. https://doi.org/10.3389/fclim.2023.1325224
index-oti2018
Frontiers in Climate
url http://hdl.handle.net/20.500.12816/5505
https://doi.org/10.3389/fclim.2023.1325224
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2624-9553
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Peru
Bolivia
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/e08dcc70-6860-4bce-8288-3d763f5d28b4/download
https://repositorio.igp.gob.pe/bitstreams/15463ba2-0fc2-4fb7-9bcb-1790539657ae/download
https://repositorio.igp.gob.pe/bitstreams/d7ac9a64-c2d2-44d0-9272-91cfc88a5733/download
https://repositorio.igp.gob.pe/bitstreams/cfbadf86-55bc-4aa3-9c6d-9741e0ec153a/download
bitstream.checksum.fl_str_mv 192a4c3872af3d202092f0f223a70ac6
8a4605be74aa9ea9d79846c1fba20a33
7e9e3efa28af8dde9c2ac4855eff26bd
68dd054b5c9f26690400b347406a0c6f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618081929592832
spelling Sulca Jota, Juan CarlosApaéstegui Campos, James EmilianoTacza, JoséPeruBolivia2024-01-18T21:44:50Z2024-01-18T21:44:50Z2024-01-12Sulca, J., Apaéstegui, J., & Tacza, J. (2024). New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century.==$Frontiers in Climate, 5,$==1325224. https://doi.org/10.3389/fclim.2023.1325224index-oti2018http://hdl.handle.net/20.500.12816/5505Frontiers in Climatehttps://doi.org/10.3389/fclim.2023.1325224The water disponibility of Lake Titicaca is important for local ecosystems, domestic water, industry, fishing, agriculture, and tourism in Peru and Bolivia. However, the water level variability in Lake Titicaca (LTWL) still needs to be understood. The fluctuations of LTWL during the 1921–2018 period are investigated using continuous wavelet techniques on high- and low-pass filters of monthly time series, ERA-20C reanalysis, sea surface temperature (SST), and water level. We also built multiple linear regression (MLR) models based on SST indices to identify the main drivers of the LTWL variability. LTWL features annual (12 months), biennial (22–28 months), interannual (80–108 months), decadal (12.75–14.06 years), interdecadal (24.83–26.50 years), and multidecadal (30–65 years) signals. The high- and low-frequency components of the LTWL are triggered by the humidity transport from the lowland toward the Lake Titicaca basin, although different forcings could cause it. The biennial band is associated with SST anomalies over the southeastern tropical Atlantic Ocean that strengthen the Bolivian High-Nordeste Low system. The interannual band is associated with the southern South Atlantic SST anomalies, which modulate the position of the Bolivian High. According to the MLR models, the decadal and interdecadal components of the LTWL can be explained by the linear combination of the decadal and interdecadal variability of the Pacific and Atlantic SST anomalies (r > 0.83, p < 0.05). In contrast, the multidecadal component of the LTWL is driven by the multidecadal component of the North Atlantic SST anomalies (AMO) and the southern South Atlantic SST anomalies. Moreover, the monthly time series of LTWL exhibits four breakpoints. The signs of the first four trends follow the change of phases of the multidecadal component of LTWL, while the fifth trend is zero attributable to the diminished amplitude of the interdecadal component of LTWL.Este trabajo fue financiado parcialmente por el PROCIENCIA [número de contrato 124-2020].Este trabajo se realizó utilizando recursos computacionales, HPC-Linux Cluster, del Laboratorio de Dinámica de Fluidos Geofísicos Computacional del Instituto Geofísico del Perú, financiado por el Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (Fondecyt - Perú) [número de contrato 101-2014].Por paresapplication/pdfengFrontiers Mediaurn:issn:2624-9553info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Lake Titicaca water levelHigh-and low-frequency variabilityMultiple linear regression modelsPacific Decadal OscillationAtlantic Multidecadal OscillationSouth Atlantic OceanBolivian High and Nordeste Low (BH–NL) systemhttps://purl.org/pe-repo/ocde/ford#1.05.09https://purl.org/pe-repo/ocde/ford#1.05.10New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th centuryinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALSulca_et_al_2023_Frontiers_Climate.pdfSulca_et_al_2023_Frontiers_Climate.pdfapplication/pdf4932780https://repositorio.igp.gob.pe/bitstreams/e08dcc70-6860-4bce-8288-3d763f5d28b4/download192a4c3872af3d202092f0f223a70ac6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/15463ba2-0fc2-4fb7-9bcb-1790539657ae/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSulca_et_al_2023_Frontiers_Climate.pdf.txtSulca_et_al_2023_Frontiers_Climate.pdf.txtExtracted texttext/plain79780https://repositorio.igp.gob.pe/bitstreams/d7ac9a64-c2d2-44d0-9272-91cfc88a5733/download7e9e3efa28af8dde9c2ac4855eff26bdMD53THUMBNAILSulca_et_al_2023_Frontiers_Climate.pdf.jpgSulca_et_al_2023_Frontiers_Climate.pdf.jpgIM Thumbnailimage/jpeg66529https://repositorio.igp.gob.pe/bitstreams/cfbadf86-55bc-4aa3-9c6d-9741e0ec153a/download68dd054b5c9f26690400b347406a0c6fMD5420.500.12816/5505oai:repositorio.igp.gob.pe:20.500.12816/55052024-12-18 15:19:59.977https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).