Explained predictions of strong eastern Pacific El Niño events using deep learning
Descripción del Articulo
Global and regional impacts of El Niño-Southern Oscillation (ENSO) are sensitive to the details of the pattern of anomalous ocean warming and cooling, such as the contrasts between the eastern and central Pacific. However, skillful prediction of such ENSO diversity remains a challenge even a few mon...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Instituto Geofísico del Perú |
| Repositorio: | IGP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/5497 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12816/5497 https://doi.org/10.1038/s41598-023-45739-3 |
| Nivel de acceso: | acceso abierto |
| Materia: | Climate sciences Ocean sciences El Niño https://purl.org/pe-repo/ocde/ford#1.05.09 |
| id |
IGPR_0c75119e234377690d93af8827e0aa52 |
|---|---|
| oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/5497 |
| network_acronym_str |
IGPR |
| network_name_str |
IGP-Institucional |
| repository_id_str |
4701 |
| dc.title.none.fl_str_mv |
Explained predictions of strong eastern Pacific El Niño events using deep learning |
| title |
Explained predictions of strong eastern Pacific El Niño events using deep learning |
| spellingShingle |
Explained predictions of strong eastern Pacific El Niño events using deep learning Rivera Tello, Gerardo A. Climate sciences Ocean sciences El Niño https://purl.org/pe-repo/ocde/ford#1.05.09 |
| title_short |
Explained predictions of strong eastern Pacific El Niño events using deep learning |
| title_full |
Explained predictions of strong eastern Pacific El Niño events using deep learning |
| title_fullStr |
Explained predictions of strong eastern Pacific El Niño events using deep learning |
| title_full_unstemmed |
Explained predictions of strong eastern Pacific El Niño events using deep learning |
| title_sort |
Explained predictions of strong eastern Pacific El Niño events using deep learning |
| author |
Rivera Tello, Gerardo A. |
| author_facet |
Rivera Tello, Gerardo A. Takahashi, Ken Karamperidou, Christina |
| author_role |
author |
| author2 |
Takahashi, Ken Karamperidou, Christina |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Rivera Tello, Gerardo A. Takahashi, Ken Karamperidou, Christina |
| dc.subject.none.fl_str_mv |
Climate sciences Ocean sciences El Niño |
| topic |
Climate sciences Ocean sciences El Niño https://purl.org/pe-repo/ocde/ford#1.05.09 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.09 |
| description |
Global and regional impacts of El Niño-Southern Oscillation (ENSO) are sensitive to the details of the pattern of anomalous ocean warming and cooling, such as the contrasts between the eastern and central Pacific. However, skillful prediction of such ENSO diversity remains a challenge even a few months in advance. Here, we present an experimental forecast with a deep learning model (IGP-UHM AI model v1.0) for the E (eastern Pacific) and C (central Pacific) ENSO diversity indices, specialized on the onset of strong eastern Pacific El Niño events by including a classification output. We find that higher ENSO nonlinearity is associated with better skill, with potential implications for ENSO predictability in a warming climate. When initialized in May 2023, our model predicts the persistence of El Niño conditions in the eastern Pacific into 2024, but with decreasing strength, similar to 2015–2016 but much weaker than 1997–1998. In contrast to the more typical El Niño development in 1997 and 2015, in addition to the ongoing eastern Pacific warming, an eXplainable Artificial Intelligence analysis for 2023 identifies weak warm surface, increased sea level and westerly wind anomalies in the western Pacific as precursors, countered by warm surface and southerly wind anomalies in the northern Atlantic. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-12-12T19:50:07Z |
| dc.date.available.none.fl_str_mv |
2023-12-12T19:50:07Z |
| dc.date.issued.fl_str_mv |
2023-11-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.none.fl_str_mv |
Rivera Tello, G. A., Takahashi, K., & Karamperidou, C. (2023). Explained predictions of strong eastern Pacific El Niño events using deep learning.==$Scientific Reports, 13,$==(1), 21150. https://doi.org/10.1038/s41598-023-45739-3 |
| dc.identifier.govdoc.none.fl_str_mv |
index-oti2018 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/5497 |
| dc.identifier.journal.none.fl_str_mv |
Scientific Reports |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1038/s41598-023-45739-3 |
| identifier_str_mv |
Rivera Tello, G. A., Takahashi, K., & Karamperidou, C. (2023). Explained predictions of strong eastern Pacific El Niño events using deep learning.==$Scientific Reports, 13,$==(1), 21150. https://doi.org/10.1038/s41598-023-45739-3 index-oti2018 Scientific Reports |
| url |
http://hdl.handle.net/20.500.12816/5497 https://doi.org/10.1038/s41598-023-45739-3 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:2045-2322 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Nature Research |
| publisher.none.fl_str_mv |
Nature Research |
| dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
| instname_str |
Instituto Geofísico del Perú |
| instacron_str |
IGP |
| institution |
IGP |
| reponame_str |
IGP-Institucional |
| collection |
IGP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/5762b826-ead6-463f-b0de-104fb54ca014/download https://repositorio.igp.gob.pe/bitstreams/dc5e3a08-4713-41b1-94b3-40ad44e46e4a/download https://repositorio.igp.gob.pe/bitstreams/253b59e7-0389-4c3e-a90f-0cc865aaf2a6/download https://repositorio.igp.gob.pe/bitstreams/400fcc18-c5e4-44f7-a083-64e6600d9a68/download |
| bitstream.checksum.fl_str_mv |
268ef365e5573c6dd21a53178916995d 8a4605be74aa9ea9d79846c1fba20a33 e8132760996c17be038b40a7634bd7ef a0056840bc133a0b12142b430d8784cd |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
| repository.mail.fl_str_mv |
biblio@igp.gob.pe |
| _version_ |
1842618680311021568 |
| spelling |
Rivera Tello, Gerardo A.Takahashi, KenKaramperidou, Christina2023-12-12T19:50:07Z2023-12-12T19:50:07Z2023-11-30Rivera Tello, G. A., Takahashi, K., & Karamperidou, C. (2023). Explained predictions of strong eastern Pacific El Niño events using deep learning.==$Scientific Reports, 13,$==(1), 21150. https://doi.org/10.1038/s41598-023-45739-3index-oti2018http://hdl.handle.net/20.500.12816/5497Scientific Reportshttps://doi.org/10.1038/s41598-023-45739-3Global and regional impacts of El Niño-Southern Oscillation (ENSO) are sensitive to the details of the pattern of anomalous ocean warming and cooling, such as the contrasts between the eastern and central Pacific. However, skillful prediction of such ENSO diversity remains a challenge even a few months in advance. Here, we present an experimental forecast with a deep learning model (IGP-UHM AI model v1.0) for the E (eastern Pacific) and C (central Pacific) ENSO diversity indices, specialized on the onset of strong eastern Pacific El Niño events by including a classification output. We find that higher ENSO nonlinearity is associated with better skill, with potential implications for ENSO predictability in a warming climate. When initialized in May 2023, our model predicts the persistence of El Niño conditions in the eastern Pacific into 2024, but with decreasing strength, similar to 2015–2016 but much weaker than 1997–1998. In contrast to the more typical El Niño development in 1997 and 2015, in addition to the ongoing eastern Pacific warming, an eXplainable Artificial Intelligence analysis for 2023 identifies weak warm surface, increased sea level and westerly wind anomalies in the western Pacific as precursors, countered by warm surface and southerly wind anomalies in the northern Atlantic.Por paresapplication/pdfengNature Researchurn:issn:2045-2322info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Climate sciencesOcean sciencesEl Niñohttps://purl.org/pe-repo/ocde/ford#1.05.09Explained predictions of strong eastern Pacific El Niño events using deep learninginfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALTello_et_al_2023_Scientific_Reports.pdfTello_et_al_2023_Scientific_Reports.pdfapplication/pdf8572454https://repositorio.igp.gob.pe/bitstreams/5762b826-ead6-463f-b0de-104fb54ca014/download268ef365e5573c6dd21a53178916995dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/dc5e3a08-4713-41b1-94b3-40ad44e46e4a/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTTello_et_al_2023_Scientific_Reports.pdf.txtTello_et_al_2023_Scientific_Reports.pdf.txtExtracted texttext/plain60256https://repositorio.igp.gob.pe/bitstreams/253b59e7-0389-4c3e-a90f-0cc865aaf2a6/downloade8132760996c17be038b40a7634bd7efMD53THUMBNAILTello_et_al_2023_Scientific_Reports.pdf.jpgTello_et_al_2023_Scientific_Reports.pdf.jpgIM Thumbnailimage/jpeg95702https://repositorio.igp.gob.pe/bitstreams/400fcc18-c5e4-44f7-a083-64e6600d9a68/downloada0056840bc133a0b12142b430d8784cdMD5420.500.12816/5497oai:repositorio.igp.gob.pe:20.500.12816/54972024-10-01 16:35:58.799https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.945198 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).