Explained predictions of strong eastern Pacific El Niño events using deep learning

Descripción del Articulo

Global and regional impacts of El Niño-Southern Oscillation (ENSO) are sensitive to the details of the pattern of anomalous ocean warming and cooling, such as the contrasts between the eastern and central Pacific. However, skillful prediction of such ENSO diversity remains a challenge even a few mon...

Descripción completa

Detalles Bibliográficos
Autores: Rivera Tello, Gerardo A., Takahashi, Ken, Karamperidou, Christina
Formato: artículo
Fecha de Publicación:2023
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/5497
Enlace del recurso:http://hdl.handle.net/20.500.12816/5497
https://doi.org/10.1038/s41598-023-45739-3
Nivel de acceso:acceso abierto
Materia:Climate sciences
Ocean sciences
El Niño
https://purl.org/pe-repo/ocde/ford#1.05.09
id IGPR_0c75119e234377690d93af8827e0aa52
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/5497
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Explained predictions of strong eastern Pacific El Niño events using deep learning
title Explained predictions of strong eastern Pacific El Niño events using deep learning
spellingShingle Explained predictions of strong eastern Pacific El Niño events using deep learning
Rivera Tello, Gerardo A.
Climate sciences
Ocean sciences
El Niño
https://purl.org/pe-repo/ocde/ford#1.05.09
title_short Explained predictions of strong eastern Pacific El Niño events using deep learning
title_full Explained predictions of strong eastern Pacific El Niño events using deep learning
title_fullStr Explained predictions of strong eastern Pacific El Niño events using deep learning
title_full_unstemmed Explained predictions of strong eastern Pacific El Niño events using deep learning
title_sort Explained predictions of strong eastern Pacific El Niño events using deep learning
author Rivera Tello, Gerardo A.
author_facet Rivera Tello, Gerardo A.
Takahashi, Ken
Karamperidou, Christina
author_role author
author2 Takahashi, Ken
Karamperidou, Christina
author2_role author
author
dc.contributor.author.fl_str_mv Rivera Tello, Gerardo A.
Takahashi, Ken
Karamperidou, Christina
dc.subject.none.fl_str_mv Climate sciences
Ocean sciences
El Niño
topic Climate sciences
Ocean sciences
El Niño
https://purl.org/pe-repo/ocde/ford#1.05.09
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.09
description Global and regional impacts of El Niño-Southern Oscillation (ENSO) are sensitive to the details of the pattern of anomalous ocean warming and cooling, such as the contrasts between the eastern and central Pacific. However, skillful prediction of such ENSO diversity remains a challenge even a few months in advance. Here, we present an experimental forecast with a deep learning model (IGP-UHM AI model v1.0) for the E (eastern Pacific) and C (central Pacific) ENSO diversity indices, specialized on the onset of strong eastern Pacific El Niño events by including a classification output. We find that higher ENSO nonlinearity is associated with better skill, with potential implications for ENSO predictability in a warming climate. When initialized in May 2023, our model predicts the persistence of El Niño conditions in the eastern Pacific into 2024, but with decreasing strength, similar to 2015–2016 but much weaker than 1997–1998. In contrast to the more typical El Niño development in 1997 and 2015, in addition to the ongoing eastern Pacific warming, an eXplainable Artificial Intelligence analysis for 2023 identifies weak warm surface, increased sea level and westerly wind anomalies in the western Pacific as precursors, countered by warm surface and southerly wind anomalies in the northern Atlantic.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-12T19:50:07Z
dc.date.available.none.fl_str_mv 2023-12-12T19:50:07Z
dc.date.issued.fl_str_mv 2023-11-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Rivera Tello, G. A., Takahashi, K., & Karamperidou, C. (2023). Explained predictions of strong eastern Pacific El Niño events using deep learning.==$Scientific Reports, 13,$==(1), 21150. https://doi.org/10.1038/s41598-023-45739-3
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/5497
dc.identifier.journal.none.fl_str_mv Scientific Reports
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1038/s41598-023-45739-3
identifier_str_mv Rivera Tello, G. A., Takahashi, K., & Karamperidou, C. (2023). Explained predictions of strong eastern Pacific El Niño events using deep learning.==$Scientific Reports, 13,$==(1), 21150. https://doi.org/10.1038/s41598-023-45739-3
index-oti2018
Scientific Reports
url http://hdl.handle.net/20.500.12816/5497
https://doi.org/10.1038/s41598-023-45739-3
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2045-2322
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Nature Research
publisher.none.fl_str_mv Nature Research
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/5762b826-ead6-463f-b0de-104fb54ca014/download
https://repositorio.igp.gob.pe/bitstreams/dc5e3a08-4713-41b1-94b3-40ad44e46e4a/download
https://repositorio.igp.gob.pe/bitstreams/253b59e7-0389-4c3e-a90f-0cc865aaf2a6/download
https://repositorio.igp.gob.pe/bitstreams/400fcc18-c5e4-44f7-a083-64e6600d9a68/download
bitstream.checksum.fl_str_mv 268ef365e5573c6dd21a53178916995d
8a4605be74aa9ea9d79846c1fba20a33
e8132760996c17be038b40a7634bd7ef
a0056840bc133a0b12142b430d8784cd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618680311021568
spelling Rivera Tello, Gerardo A.Takahashi, KenKaramperidou, Christina2023-12-12T19:50:07Z2023-12-12T19:50:07Z2023-11-30Rivera Tello, G. A., Takahashi, K., & Karamperidou, C. (2023). Explained predictions of strong eastern Pacific El Niño events using deep learning.==$Scientific Reports, 13,$==(1), 21150. https://doi.org/10.1038/s41598-023-45739-3index-oti2018http://hdl.handle.net/20.500.12816/5497Scientific Reportshttps://doi.org/10.1038/s41598-023-45739-3Global and regional impacts of El Niño-Southern Oscillation (ENSO) are sensitive to the details of the pattern of anomalous ocean warming and cooling, such as the contrasts between the eastern and central Pacific. However, skillful prediction of such ENSO diversity remains a challenge even a few months in advance. Here, we present an experimental forecast with a deep learning model (IGP-UHM AI model v1.0) for the E (eastern Pacific) and C (central Pacific) ENSO diversity indices, specialized on the onset of strong eastern Pacific El Niño events by including a classification output. We find that higher ENSO nonlinearity is associated with better skill, with potential implications for ENSO predictability in a warming climate. When initialized in May 2023, our model predicts the persistence of El Niño conditions in the eastern Pacific into 2024, but with decreasing strength, similar to 2015–2016 but much weaker than 1997–1998. In contrast to the more typical El Niño development in 1997 and 2015, in addition to the ongoing eastern Pacific warming, an eXplainable Artificial Intelligence analysis for 2023 identifies weak warm surface, increased sea level and westerly wind anomalies in the western Pacific as precursors, countered by warm surface and southerly wind anomalies in the northern Atlantic.Por paresapplication/pdfengNature Researchurn:issn:2045-2322info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Climate sciencesOcean sciencesEl Niñohttps://purl.org/pe-repo/ocde/ford#1.05.09Explained predictions of strong eastern Pacific El Niño events using deep learninginfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALTello_et_al_2023_Scientific_Reports.pdfTello_et_al_2023_Scientific_Reports.pdfapplication/pdf8572454https://repositorio.igp.gob.pe/bitstreams/5762b826-ead6-463f-b0de-104fb54ca014/download268ef365e5573c6dd21a53178916995dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/dc5e3a08-4713-41b1-94b3-40ad44e46e4a/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTTello_et_al_2023_Scientific_Reports.pdf.txtTello_et_al_2023_Scientific_Reports.pdf.txtExtracted texttext/plain60256https://repositorio.igp.gob.pe/bitstreams/253b59e7-0389-4c3e-a90f-0cc865aaf2a6/downloade8132760996c17be038b40a7634bd7efMD53THUMBNAILTello_et_al_2023_Scientific_Reports.pdf.jpgTello_et_al_2023_Scientific_Reports.pdf.jpgIM Thumbnailimage/jpeg95702https://repositorio.igp.gob.pe/bitstreams/400fcc18-c5e4-44f7-a083-64e6600d9a68/downloada0056840bc133a0b12142b430d8784cdMD5420.500.12816/5497oai:repositorio.igp.gob.pe:20.500.12816/54972024-10-01 16:35:58.799https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.945198
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).