Propuesta de segmentación de clientes aplicando técnicas de Machine Learning para mejorar la estrategia de ventas de productos de bebidas en el departamento de Ica

Descripción del Articulo

La investigación se centra en el mercado de bebidas en el departamento de Ica, con el objetivo de automatizar la segmentación de clientes y, por consiguiente, mejorar las estrategias comerciales de ventas. Al implementar las fases de la metodología, las primeras etapas se dedicarán al procesamiento...

Descripción completa

Detalles Bibliográficos
Autores: Alikhan Trujillo, Kledy Fiorella, Aspiazu Neyra, Luis Eduardo, Auccapiña Guillen, Juan Abner, Ayna Benegas, Irene, Cardenas Pijo, Melisa Consuelo
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/3889
Enlace del recurso:https://hdl.handle.net/20.500.12640/3889
Nivel de acceso:acceso embargado
Materia:Automatización
Segmentación del mercado
Machine learning
Industria de elaboración de bebidas
https://purl.org/pe-repo/ocde/ford#2.11.04
https://purl.org/pe-repo/ocde/ford#5.02.04
Descripción
Sumario:La investigación se centra en el mercado de bebidas en el departamento de Ica, con el objetivo de automatizar la segmentación de clientes y, por consiguiente, mejorar las estrategias comerciales de ventas. Al implementar las fases de la metodología, las primeras etapas se dedicarán al procesamiento y tratamiento riguroso de los datos, preparando así el terreno para la construcción del modelo en la fase subsiguiente. Se emplearán técnicas de aprendizaje no supervisado de Machine Learning, como K-Means, K-Medoids, Agrupación Jerárquica, DBSCAN y HDBSCAN, con parámetros óptimos. En las últimas fases, se realizarán las agrupaciones de perfiles de tipo clúster basándose en un análisis detenido de la información recopilada y las variables pertinentes. El resultado será un reporte consolidado que proporcionará una visión detallada por cada perfil de cliente. Con esta información clave el gestor comercial de ventas podrá tomar decisiones comerciales estratégicas sobre ventas. De forma complementaria, se realizará una validación con un experto del rubro para verificar el tipo de clúster adecuado como candidato óptimo de la automatización de la segmentación de clientes.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).