Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making

Descripción del Articulo

Purpose: This study aims to examine foreign direct investment (FDI) factors and develops a rational framework for FDI inflow in Western European countries such as France, Germany, the Netherlands, Switzerland, Belgium and Austria. Design/methodology/approach: Data for this study were collected from...

Descripción completa

Detalles Bibliográficos
Autor: Singh, Devesh
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/4004
Enlace del recurso:https://hdl.handle.net/20.500.12640/4004
https://doi.org/10.1108/JEFAS-05-2021-0069
Nivel de acceso:acceso abierto
Materia:FDI
Machine learning
Interpretable machine learning
IED
Aprendizaje automático
Aprendizaje automático interpretable
https://purl.org/pe-repo/ocde/ford#5.02.04
id ESAN_bd6f57b952a0de5cc8df7d5673043335
oai_identifier_str oai:repositorio.esan.edu.pe:20.500.12640/4004
network_acronym_str ESAN
network_name_str ESAN-Institucional
repository_id_str 4835
spelling Singh, Devesh2024-07-03T21:23:32Z2024-07-03T21:23:32Z2024-03-30Singh, D. (2024). Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making. Journal of Economics, Finance and Administrative Science, 29(57), 98–120. https://doi.org/10.1108/JEFAS-05-2021-0069https://hdl.handle.net/20.500.12640/4004https://doi.org/10.1108/JEFAS-05-2021-0069Purpose: This study aims to examine foreign direct investment (FDI) factors and develops a rational framework for FDI inflow in Western European countries such as France, Germany, the Netherlands, Switzerland, Belgium and Austria. Design/methodology/approach: Data for this study were collected from the World development indicators (WDI) database from 1995 to 2018. Factors such as economic growth, pollution, trade, domestic capital investment, gross value-added and the financial stability of the country that influence FDI decisions were selected through empirical literature. A framework was developed using interpretable machine learning (IML), decision trees and three-stage least squares simultaneous equation methods for FDI inflow in Western Europe. Findings: The findings of this study show that there is a difference between the most important and trusted factors for FDI inflow. Additionally, this study shows that machine learning (ML) models can perform better than conventional linear regression models. Research limitations/implications: This research has several limitations. Ideally, classification accuracies should be higher, and the current scope of this research is limited to examining the performance of FDI determinants within Western Europe. Practical implications: Through this framework, the national government can understand how investors make their capital allocation decisions in their country. The framework developed in this study can help policymakers better understand the rationality of FDI inflows. Originality/value: An IML framework has not been developed in prior studies to analyze FDI inflows. Additionally, the author demonstrates the applicability of the IML framework for estimating FDI inflows in Western Europe.application/pdfInglésengUniversidad ESAN. ESAN EdicionesPEurn:issn:2218-0648https://revistas.esan.edu.pe/index.php/jefas/article/view/727/582Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/FDIMachine learningInterpretable machine learningIEDAprendizaje automáticoAprendizaje automático interpretablehttps://purl.org/pe-repo/ocde/ford#5.02.04Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision makinginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANJournal of Economics, Finance and Administrative Science120579829Acceso abiertoTHUMBNAIL57.pngimage/png852836https://repositorio.esan.edu.pe/bitstreams/024e3569-f603-4e31-a8ce-5f0445f35b88/download7c0563e23c5b83d4466fccc42e5d04e8MD51falseAnonymousREAD_JEFAS-57-2024-98-120.pdf.jpg_JEFAS-57-2024-98-120.pdf.jpgGenerated Thumbnailimage/jpeg6198https://repositorio.esan.edu.pe/bitstreams/8a4174d1-2328-4767-b54d-eacb63fe68fc/download97d063e42ef279d538785d002b26e218MD54falseAnonymousREADORIGINAL_JEFAS-57-2024-98-120.pdfTexto completoapplication/pdf1927642https://repositorio.esan.edu.pe/bitstreams/b030fb5d-c4a9-4f0f-b313-bea9b941433b/download736c8ca7c4ab5e938a4da6e54ee383f5MD52trueAnonymousREADTEXT_JEFAS-57-2024-98-120.pdf.txt_JEFAS-57-2024-98-120.pdf.txtExtracted texttext/plain78483https://repositorio.esan.edu.pe/bitstreams/e0413e80-3528-48c3-b7ae-79be41b0dfe6/download123a8bb6ab11f0d2a0b0f5e00dbdcda0MD53falseAnonymousREAD20.500.12640/4004oai:repositorio.esan.edu.pe:20.500.12640/40042025-07-09 09:30:19.167https://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe
dc.title.en_EN.fl_str_mv Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making
title Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making
spellingShingle Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making
Singh, Devesh
FDI
Machine learning
Interpretable machine learning
IED
Aprendizaje automático
Aprendizaje automático interpretable
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making
title_full Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making
title_fullStr Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making
title_full_unstemmed Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making
title_sort Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making
author Singh, Devesh
author_facet Singh, Devesh
author_role author
dc.contributor.author.fl_str_mv Singh, Devesh
dc.subject.en_EN.fl_str_mv FDI
Machine learning
Interpretable machine learning
topic FDI
Machine learning
Interpretable machine learning
IED
Aprendizaje automático
Aprendizaje automático interpretable
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.es_ES.fl_str_mv IED
Aprendizaje automático
Aprendizaje automático interpretable
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description Purpose: This study aims to examine foreign direct investment (FDI) factors and develops a rational framework for FDI inflow in Western European countries such as France, Germany, the Netherlands, Switzerland, Belgium and Austria. Design/methodology/approach: Data for this study were collected from the World development indicators (WDI) database from 1995 to 2018. Factors such as economic growth, pollution, trade, domestic capital investment, gross value-added and the financial stability of the country that influence FDI decisions were selected through empirical literature. A framework was developed using interpretable machine learning (IML), decision trees and three-stage least squares simultaneous equation methods for FDI inflow in Western Europe. Findings: The findings of this study show that there is a difference between the most important and trusted factors for FDI inflow. Additionally, this study shows that machine learning (ML) models can perform better than conventional linear regression models. Research limitations/implications: This research has several limitations. Ideally, classification accuracies should be higher, and the current scope of this research is limited to examining the performance of FDI determinants within Western Europe. Practical implications: Through this framework, the national government can understand how investors make their capital allocation decisions in their country. The framework developed in this study can help policymakers better understand the rationality of FDI inflows. Originality/value: An IML framework has not been developed in prior studies to analyze FDI inflows. Additionally, the author demonstrates the applicability of the IML framework for estimating FDI inflows in Western Europe.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-03T21:23:32Z
dc.date.available.none.fl_str_mv 2024-07-03T21:23:32Z
dc.date.issued.fl_str_mv 2024-03-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.other.none.fl_str_mv Artículo
format article
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Singh, D. (2024). Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making. Journal of Economics, Finance and Administrative Science, 29(57), 98–120. https://doi.org/10.1108/JEFAS-05-2021-0069
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12640/4004
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1108/JEFAS-05-2021-0069
identifier_str_mv Singh, D. (2024). Foreign direct investment and local interpretable model-agnostic explanations: a rational framework for FDI decision making. Journal of Economics, Finance and Administrative Science, 29(57), 98–120. https://doi.org/10.1108/JEFAS-05-2021-0069
url https://hdl.handle.net/20.500.12640/4004
https://doi.org/10.1108/JEFAS-05-2021-0069
dc.language.none.fl_str_mv Inglés
dc.language.iso.none.fl_str_mv eng
language_invalid_str_mv Inglés
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2218-0648
dc.relation.uri.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/727/582
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.source.none.fl_str_mv reponame:ESAN-Institucional
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str ESAN-Institucional
collection ESAN-Institucional
bitstream.url.fl_str_mv https://repositorio.esan.edu.pe/bitstreams/024e3569-f603-4e31-a8ce-5f0445f35b88/download
https://repositorio.esan.edu.pe/bitstreams/8a4174d1-2328-4767-b54d-eacb63fe68fc/download
https://repositorio.esan.edu.pe/bitstreams/b030fb5d-c4a9-4f0f-b313-bea9b941433b/download
https://repositorio.esan.edu.pe/bitstreams/e0413e80-3528-48c3-b7ae-79be41b0dfe6/download
bitstream.checksum.fl_str_mv 7c0563e23c5b83d4466fccc42e5d04e8
97d063e42ef279d538785d002b26e218
736c8ca7c4ab5e938a4da6e54ee383f5
123a8bb6ab11f0d2a0b0f5e00dbdcda0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional ESAN
repository.mail.fl_str_mv repositorio@esan.edu.pe
_version_ 1843261745370497024
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).