A comparative analysis of consumer credit risk models in Peer-to-Peer Lending
Descripción del Articulo
Purpose: The purpose of this paper is to compare nine different models to evaluate consumer credit risk, which are the following: Logistic Regression (LR), Naive Bayes (NB), Linear Discriminant Analysis (LDA), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), Classification and Regression Tre...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad ESAN |
| Repositorio: | ESAN-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.esan.edu.pe:20.500.12640/4299 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12640/4299 https://doi.org/10.1108/JEFAS-04-2021-0026 |
| Nivel de acceso: | acceso abierto |
| Materia: | P2P lending Lending club Default risk Credit risk models GBDT Préstamos P2P Club de préstamos Riesgo de impago Modelos de riesgo crediticio https://purl.org/pe-repo/ocde/ford#5.02.04 |
| id |
ESAN_b200796b2a6f60402d5c32c449d8803e |
|---|---|
| oai_identifier_str |
oai:repositorio.esan.edu.pe:20.500.12640/4299 |
| network_acronym_str |
ESAN |
| network_name_str |
ESAN-Institucional |
| repository_id_str |
4835 |
| spelling |
Thi Trinh, Lua2024-12-11T11:56:04Z2024-10-28Thi Trinh, L. (2024). A comparative analysis of consumer credit risk models in Peer-to-Peer Lending. Journal of Economics, Finance and Administrative Science, 29(58), 346–365. https://doi.org/10.1108/JEFAS-04-2021-0026https://hdl.handle.net/20.500.12640/4299https://doi.org/10.1108/JEFAS-04-2021-0026Purpose: The purpose of this paper is to compare nine different models to evaluate consumer credit risk, which are the following: Logistic Regression (LR), Naive Bayes (NB), Linear Discriminant Analysis (LDA), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), Classification and Regression Tree (CART), Artificial Neural Network (ANN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT) in Peer-to-Peer (P2P) Lending. Design/methodology/approach: The author uses data from P2P Lending Club (LC) to assess the efficiency of a variety of classification models across different economic scenarios and to compare the ranking results of credit risk models in P2P lending through three families of evaluation metrics. Findings: The results from this research indicate that the risk classification models in the 2013–2019 economic period show greater measurement efficiency than for the difficult 2007–2012 period. Besides, the results of ranking models for predicting default risk show that GBDT is the best model for most of the metrics or metric families included in the study. The findings of this study also support the results of Tsai et al. (2014) and Teplý and Polena (2019) that LR, ANN and LDA models classify loan applications quite stably and accurately, while CART, k-NN and NB show the worst performance when predicting borrower default risk on P2P loan data. Originality/value: The main contributions of the research to the empirical literature review include: comparing nine prediction models of consumer loan application risk through statistical and machine learning algorithms evaluated by the performance measures according to three separate families of metrics (threshold, ranking and probabilistic metrics) that are consistent with the existing data characteristics of the LC lending platform through two periods of reviewing the current economic situation and platform development.application/pdfInglésengUniversidad ESAN. ESAN EdicionesPEurn:issn:2218-0648https://revistas.esan.edu.pe/index.php/jefas/article/view/772/777Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/P2P lendingLending clubDefault riskCredit risk modelsGBDTPréstamos P2PClub de préstamosRiesgo de impagoModelos de riesgo crediticioGBDThttps://purl.org/pe-repo/ocde/ford#5.02.04A comparative analysis of consumer credit risk models in Peer-to-Peer Lendinginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANJournal of Economics, Finance and Administrative Science3655834629Acceso abiertoTHUMBNAIL58.pngimage/png651483https://repositorio.esan.edu.pe/bitstreams/bbc366e4-78f0-48f0-9183-1b4be7d73483/downloadd2716d55c11e679cbb75e46d967e024eMD51falseAnonymousREAD_JEFAS-58-2024-346-365.pdf.jpg_JEFAS-58-2024-346-365.pdf.jpgGenerated Thumbnailimage/jpeg6089https://repositorio.esan.edu.pe/bitstreams/9783364c-1a22-4afa-95cf-f95783d66137/downloada52885c1e1a9c360b0808a920d39e234MD54falseAnonymousREADORIGINAL_JEFAS-58-2024-346-365.pdfTexto completoapplication/pdf1012794https://repositorio.esan.edu.pe/bitstreams/abb374be-3bd1-4352-9470-2168d1bcdeda/downloadbb8e84ae351b1ff01359621c6392a6f9MD52trueAnonymousREADTEXT_JEFAS-58-2024-346-365.pdf.txt_JEFAS-58-2024-346-365.pdf.txtExtracted texttext/plain64285https://repositorio.esan.edu.pe/bitstreams/a338ffd2-9073-438f-96d4-0a9c76fcca31/download73143e110af32794e6836e570e734f14MD53falseAnonymousREAD20.500.12640/4299oai:repositorio.esan.edu.pe:20.500.12640/42992025-07-09 09:29:42.142https://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe |
| dc.title.en_EN.fl_str_mv |
A comparative analysis of consumer credit risk models in Peer-to-Peer Lending |
| title |
A comparative analysis of consumer credit risk models in Peer-to-Peer Lending |
| spellingShingle |
A comparative analysis of consumer credit risk models in Peer-to-Peer Lending Thi Trinh, Lua P2P lending Lending club Default risk Credit risk models GBDT Préstamos P2P Club de préstamos Riesgo de impago Modelos de riesgo crediticio GBDT https://purl.org/pe-repo/ocde/ford#5.02.04 |
| title_short |
A comparative analysis of consumer credit risk models in Peer-to-Peer Lending |
| title_full |
A comparative analysis of consumer credit risk models in Peer-to-Peer Lending |
| title_fullStr |
A comparative analysis of consumer credit risk models in Peer-to-Peer Lending |
| title_full_unstemmed |
A comparative analysis of consumer credit risk models in Peer-to-Peer Lending |
| title_sort |
A comparative analysis of consumer credit risk models in Peer-to-Peer Lending |
| author |
Thi Trinh, Lua |
| author_facet |
Thi Trinh, Lua |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Thi Trinh, Lua |
| dc.subject.en_EN.fl_str_mv |
P2P lending Lending club Default risk Credit risk models GBDT |
| topic |
P2P lending Lending club Default risk Credit risk models GBDT Préstamos P2P Club de préstamos Riesgo de impago Modelos de riesgo crediticio GBDT https://purl.org/pe-repo/ocde/ford#5.02.04 |
| dc.subject.es_ES.fl_str_mv |
Préstamos P2P Club de préstamos Riesgo de impago Modelos de riesgo crediticio GBDT |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.02.04 |
| description |
Purpose: The purpose of this paper is to compare nine different models to evaluate consumer credit risk, which are the following: Logistic Regression (LR), Naive Bayes (NB), Linear Discriminant Analysis (LDA), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), Classification and Regression Tree (CART), Artificial Neural Network (ANN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT) in Peer-to-Peer (P2P) Lending. Design/methodology/approach: The author uses data from P2P Lending Club (LC) to assess the efficiency of a variety of classification models across different economic scenarios and to compare the ranking results of credit risk models in P2P lending through three families of evaluation metrics. Findings: The results from this research indicate that the risk classification models in the 2013–2019 economic period show greater measurement efficiency than for the difficult 2007–2012 period. Besides, the results of ranking models for predicting default risk show that GBDT is the best model for most of the metrics or metric families included in the study. The findings of this study also support the results of Tsai et al. (2014) and Teplý and Polena (2019) that LR, ANN and LDA models classify loan applications quite stably and accurately, while CART, k-NN and NB show the worst performance when predicting borrower default risk on P2P loan data. Originality/value: The main contributions of the research to the empirical literature review include: comparing nine prediction models of consumer loan application risk through statistical and machine learning algorithms evaluated by the performance measures according to three separate families of metrics (threshold, ranking and probabilistic metrics) that are consistent with the existing data characteristics of the LC lending platform through two periods of reviewing the current economic situation and platform development. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-12-11T11:56:04Z |
| dc.date.issued.fl_str_mv |
2024-10-28 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.other.none.fl_str_mv |
Artículo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Thi Trinh, L. (2024). A comparative analysis of consumer credit risk models in Peer-to-Peer Lending. Journal of Economics, Finance and Administrative Science, 29(58), 346–365. https://doi.org/10.1108/JEFAS-04-2021-0026 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12640/4299 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1108/JEFAS-04-2021-0026 |
| identifier_str_mv |
Thi Trinh, L. (2024). A comparative analysis of consumer credit risk models in Peer-to-Peer Lending. Journal of Economics, Finance and Administrative Science, 29(58), 346–365. https://doi.org/10.1108/JEFAS-04-2021-0026 |
| url |
https://hdl.handle.net/20.500.12640/4299 https://doi.org/10.1108/JEFAS-04-2021-0026 |
| dc.language.none.fl_str_mv |
Inglés |
| dc.language.iso.none.fl_str_mv |
eng |
| language_invalid_str_mv |
Inglés |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:2218-0648 |
| dc.relation.uri.none.fl_str_mv |
https://revistas.esan.edu.pe/index.php/jefas/article/view/772/777 |
| dc.rights.en.fl_str_mv |
Attribution 4.0 International |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| rights_invalid_str_mv |
Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.es_ES.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad ESAN. ESAN Ediciones |
| dc.publisher.country.none.fl_str_mv |
PE |
| publisher.none.fl_str_mv |
Universidad ESAN. ESAN Ediciones |
| dc.source.none.fl_str_mv |
reponame:ESAN-Institucional instname:Universidad ESAN instacron:ESAN |
| instname_str |
Universidad ESAN |
| instacron_str |
ESAN |
| institution |
ESAN |
| reponame_str |
ESAN-Institucional |
| collection |
ESAN-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.esan.edu.pe/bitstreams/bbc366e4-78f0-48f0-9183-1b4be7d73483/download https://repositorio.esan.edu.pe/bitstreams/9783364c-1a22-4afa-95cf-f95783d66137/download https://repositorio.esan.edu.pe/bitstreams/abb374be-3bd1-4352-9470-2168d1bcdeda/download https://repositorio.esan.edu.pe/bitstreams/a338ffd2-9073-438f-96d4-0a9c76fcca31/download |
| bitstream.checksum.fl_str_mv |
d2716d55c11e679cbb75e46d967e024e a52885c1e1a9c360b0808a920d39e234 bb8e84ae351b1ff01359621c6392a6f9 73143e110af32794e6836e570e734f14 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional ESAN |
| repository.mail.fl_str_mv |
repositorio@esan.edu.pe |
| _version_ |
1843261840077881344 |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).