A comparative analysis of consumer credit risk models in Peer-to-Peer Lending

Descripción del Articulo

Purpose: The purpose of this paper is to compare nine different models to evaluate consumer credit risk, which are the following: Logistic Regression (LR), Naive Bayes (NB), Linear Discriminant Analysis (LDA), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), Classification and Regression Tre...

Descripción completa

Detalles Bibliográficos
Autor: Thi Trinh, Lua
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/4299
Enlace del recurso:https://hdl.handle.net/20.500.12640/4299
https://doi.org/10.1108/JEFAS-04-2021-0026
Nivel de acceso:acceso abierto
Materia:P2P lending
Lending club
Default risk
Credit risk models
GBDT
Préstamos P2P
Club de préstamos
Riesgo de impago
Modelos de riesgo crediticio
https://purl.org/pe-repo/ocde/ford#5.02.04
id ESAN_b200796b2a6f60402d5c32c449d8803e
oai_identifier_str oai:repositorio.esan.edu.pe:20.500.12640/4299
network_acronym_str ESAN
network_name_str ESAN-Institucional
repository_id_str 4835
spelling Thi Trinh, Lua2024-12-11T11:56:04Z2024-10-28Thi Trinh, L. (2024). A comparative analysis of consumer credit risk models in Peer-to-Peer Lending. Journal of Economics, Finance and Administrative Science, 29(58), 346–365. https://doi.org/10.1108/JEFAS-04-2021-0026https://hdl.handle.net/20.500.12640/4299https://doi.org/10.1108/JEFAS-04-2021-0026Purpose: The purpose of this paper is to compare nine different models to evaluate consumer credit risk, which are the following: Logistic Regression (LR), Naive Bayes (NB), Linear Discriminant Analysis (LDA), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), Classification and Regression Tree (CART), Artificial Neural Network (ANN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT) in Peer-to-Peer (P2P) Lending. Design/methodology/approach: The author uses data from P2P Lending Club (LC) to assess the efficiency of a variety of classification models across different economic scenarios and to compare the ranking results of credit risk models in P2P lending through three families of evaluation metrics. Findings: The results from this research indicate that the risk classification models in the 2013–2019 economic period show greater measurement efficiency than for the difficult 2007–2012 period. Besides, the results of ranking models for predicting default risk show that GBDT is the best model for most of the metrics or metric families included in the study. The findings of this study also support the results of Tsai et al. (2014) and Teplý and Polena (2019) that LR, ANN and LDA models classify loan applications quite stably and accurately, while CART, k-NN and NB show the worst performance when predicting borrower default risk on P2P loan data. Originality/value: The main contributions of the research to the empirical literature review include: comparing nine prediction models of consumer loan application risk through statistical and machine learning algorithms evaluated by the performance measures according to three separate families of metrics (threshold, ranking and probabilistic metrics) that are consistent with the existing data characteristics of the LC lending platform through two periods of reviewing the current economic situation and platform development.application/pdfInglésengUniversidad ESAN. ESAN EdicionesPEurn:issn:2218-0648https://revistas.esan.edu.pe/index.php/jefas/article/view/772/777Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/P2P lendingLending clubDefault riskCredit risk modelsGBDTPréstamos P2PClub de préstamosRiesgo de impagoModelos de riesgo crediticioGBDThttps://purl.org/pe-repo/ocde/ford#5.02.04A comparative analysis of consumer credit risk models in Peer-to-Peer Lendinginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANJournal of Economics, Finance and Administrative Science3655834629Acceso abiertoTHUMBNAIL58.pngimage/png651483https://repositorio.esan.edu.pe/bitstreams/bbc366e4-78f0-48f0-9183-1b4be7d73483/downloadd2716d55c11e679cbb75e46d967e024eMD51falseAnonymousREAD_JEFAS-58-2024-346-365.pdf.jpg_JEFAS-58-2024-346-365.pdf.jpgGenerated Thumbnailimage/jpeg6089https://repositorio.esan.edu.pe/bitstreams/9783364c-1a22-4afa-95cf-f95783d66137/downloada52885c1e1a9c360b0808a920d39e234MD54falseAnonymousREADORIGINAL_JEFAS-58-2024-346-365.pdfTexto completoapplication/pdf1012794https://repositorio.esan.edu.pe/bitstreams/abb374be-3bd1-4352-9470-2168d1bcdeda/downloadbb8e84ae351b1ff01359621c6392a6f9MD52trueAnonymousREADTEXT_JEFAS-58-2024-346-365.pdf.txt_JEFAS-58-2024-346-365.pdf.txtExtracted texttext/plain64285https://repositorio.esan.edu.pe/bitstreams/a338ffd2-9073-438f-96d4-0a9c76fcca31/download73143e110af32794e6836e570e734f14MD53falseAnonymousREAD20.500.12640/4299oai:repositorio.esan.edu.pe:20.500.12640/42992025-07-09 09:29:42.142https://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe
dc.title.en_EN.fl_str_mv A comparative analysis of consumer credit risk models in Peer-to-Peer Lending
title A comparative analysis of consumer credit risk models in Peer-to-Peer Lending
spellingShingle A comparative analysis of consumer credit risk models in Peer-to-Peer Lending
Thi Trinh, Lua
P2P lending
Lending club
Default risk
Credit risk models
GBDT
Préstamos P2P
Club de préstamos
Riesgo de impago
Modelos de riesgo crediticio
GBDT
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short A comparative analysis of consumer credit risk models in Peer-to-Peer Lending
title_full A comparative analysis of consumer credit risk models in Peer-to-Peer Lending
title_fullStr A comparative analysis of consumer credit risk models in Peer-to-Peer Lending
title_full_unstemmed A comparative analysis of consumer credit risk models in Peer-to-Peer Lending
title_sort A comparative analysis of consumer credit risk models in Peer-to-Peer Lending
author Thi Trinh, Lua
author_facet Thi Trinh, Lua
author_role author
dc.contributor.author.fl_str_mv Thi Trinh, Lua
dc.subject.en_EN.fl_str_mv P2P lending
Lending club
Default risk
Credit risk models
GBDT
topic P2P lending
Lending club
Default risk
Credit risk models
GBDT
Préstamos P2P
Club de préstamos
Riesgo de impago
Modelos de riesgo crediticio
GBDT
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.es_ES.fl_str_mv Préstamos P2P
Club de préstamos
Riesgo de impago
Modelos de riesgo crediticio
GBDT
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description Purpose: The purpose of this paper is to compare nine different models to evaluate consumer credit risk, which are the following: Logistic Regression (LR), Naive Bayes (NB), Linear Discriminant Analysis (LDA), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), Classification and Regression Tree (CART), Artificial Neural Network (ANN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT) in Peer-to-Peer (P2P) Lending. Design/methodology/approach: The author uses data from P2P Lending Club (LC) to assess the efficiency of a variety of classification models across different economic scenarios and to compare the ranking results of credit risk models in P2P lending through three families of evaluation metrics. Findings: The results from this research indicate that the risk classification models in the 2013–2019 economic period show greater measurement efficiency than for the difficult 2007–2012 period. Besides, the results of ranking models for predicting default risk show that GBDT is the best model for most of the metrics or metric families included in the study. The findings of this study also support the results of Tsai et al. (2014) and Teplý and Polena (2019) that LR, ANN and LDA models classify loan applications quite stably and accurately, while CART, k-NN and NB show the worst performance when predicting borrower default risk on P2P loan data. Originality/value: The main contributions of the research to the empirical literature review include: comparing nine prediction models of consumer loan application risk through statistical and machine learning algorithms evaluated by the performance measures according to three separate families of metrics (threshold, ranking and probabilistic metrics) that are consistent with the existing data characteristics of the LC lending platform through two periods of reviewing the current economic situation and platform development.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-12-11T11:56:04Z
dc.date.issued.fl_str_mv 2024-10-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.other.none.fl_str_mv Artículo
format article
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Thi Trinh, L. (2024). A comparative analysis of consumer credit risk models in Peer-to-Peer Lending. Journal of Economics, Finance and Administrative Science, 29(58), 346–365. https://doi.org/10.1108/JEFAS-04-2021-0026
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12640/4299
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1108/JEFAS-04-2021-0026
identifier_str_mv Thi Trinh, L. (2024). A comparative analysis of consumer credit risk models in Peer-to-Peer Lending. Journal of Economics, Finance and Administrative Science, 29(58), 346–365. https://doi.org/10.1108/JEFAS-04-2021-0026
url https://hdl.handle.net/20.500.12640/4299
https://doi.org/10.1108/JEFAS-04-2021-0026
dc.language.none.fl_str_mv Inglés
dc.language.iso.none.fl_str_mv eng
language_invalid_str_mv Inglés
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2218-0648
dc.relation.uri.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/772/777
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.source.none.fl_str_mv reponame:ESAN-Institucional
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str ESAN-Institucional
collection ESAN-Institucional
bitstream.url.fl_str_mv https://repositorio.esan.edu.pe/bitstreams/bbc366e4-78f0-48f0-9183-1b4be7d73483/download
https://repositorio.esan.edu.pe/bitstreams/9783364c-1a22-4afa-95cf-f95783d66137/download
https://repositorio.esan.edu.pe/bitstreams/abb374be-3bd1-4352-9470-2168d1bcdeda/download
https://repositorio.esan.edu.pe/bitstreams/a338ffd2-9073-438f-96d4-0a9c76fcca31/download
bitstream.checksum.fl_str_mv d2716d55c11e679cbb75e46d967e024e
a52885c1e1a9c360b0808a920d39e234
bb8e84ae351b1ff01359621c6392a6f9
73143e110af32794e6836e570e734f14
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional ESAN
repository.mail.fl_str_mv repositorio@esan.edu.pe
_version_ 1843261840077881344
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).