Corporate governance characteristics and valuation: inferences from quantile regression

Descripción del Articulo

Prior literature on corporate governance and performance provides mixed evidence on the impact ofvarious corporate governance measures on performance indicators. However, most of literatures adoptthe Ordinary Least Square (OLS). This method is based on the central tendency, which may not appro-priat...

Descripción completa

Detalles Bibliográficos
Autores: Shawtari, Fekri Ali, Salem, Milad Abdelnabi, Hussain, Hafezali Iqbal, Alaeddin, Omar, Bin Thabit, Omer
Formato: artículo
Fecha de Publicación:2016
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/2608
Enlace del recurso:https://revistas.esan.edu.pe/index.php/jefas/article/view/141
https://hdl.handle.net/20.500.12640/2608
https://​doi.org/10.1016/j.jefas.2016.06.004
Nivel de acceso:acceso abierto
Materia:Performance
Corporate governance
OLS
Quantile regression
Desempeño
Gobierno corporativo
Regresión de cuantiles
https://purl.org/pe-repo/ocde/ford#5.02.04
id ESAN_84d0b4d8f6f9f40fb5a2cce1022e9458
oai_identifier_str oai:repositorio.esan.edu.pe:20.500.12640/2608
network_acronym_str ESAN
network_name_str ESAN-Institucional
repository_id_str 4835
dc.title.en_EN.fl_str_mv Corporate governance characteristics and valuation: inferences from quantile regression
title Corporate governance characteristics and valuation: inferences from quantile regression
spellingShingle Corporate governance characteristics and valuation: inferences from quantile regression
Shawtari, Fekri Ali
Performance
Corporate governance
OLS
Quantile regression
Desempeño
Gobierno corporativo
OLS
Regresión de cuantiles
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short Corporate governance characteristics and valuation: inferences from quantile regression
title_full Corporate governance characteristics and valuation: inferences from quantile regression
title_fullStr Corporate governance characteristics and valuation: inferences from quantile regression
title_full_unstemmed Corporate governance characteristics and valuation: inferences from quantile regression
title_sort Corporate governance characteristics and valuation: inferences from quantile regression
author Shawtari, Fekri Ali
author_facet Shawtari, Fekri Ali
Salem, Milad Abdelnabi
Hussain, Hafezali Iqbal
Alaeddin, Omar
Bin Thabit, Omer
author_role author
author2 Salem, Milad Abdelnabi
Hussain, Hafezali Iqbal
Alaeddin, Omar
Bin Thabit, Omer
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Shawtari, Fekri Ali
Salem, Milad Abdelnabi
Hussain, Hafezali Iqbal
Alaeddin, Omar
Bin Thabit, Omer
dc.subject.en_EN.fl_str_mv Performance
Corporate governance
OLS
Quantile regression
topic Performance
Corporate governance
OLS
Quantile regression
Desempeño
Gobierno corporativo
OLS
Regresión de cuantiles
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.es_ES.fl_str_mv Desempeño
Gobierno corporativo
OLS
Regresión de cuantiles
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description Prior literature on corporate governance and performance provides mixed evidence on the impact ofvarious corporate governance measures on performance indicators. However, most of literatures adoptthe Ordinary Least Square (OLS). This method is based on the central tendency, which may not appro-priately represent the reality in cases where the dependent variable ranges between upper and lowervalues and hence the relationship may not be homogenous across different percentiles of the dependentvariables. A variable having a positive impact based on the central tendency for firms may not be the casefor the firms in the upper or lower bounds. Thus, estimating the means using OLS may not reflect andrepresent the heterogeneity in the estimated relationship. Therefore, quantile regression estimates therelationship at any point conditional on the distribution of dependent variable. This would enable us togenerate various estimated coefficient at certain quantile of dependent variable. Therefore, the objectiveof the study is twofold. First, this study aims to investigate the relationship between corporate gover-nance and performance using OLS. Second, this work further explores the impact of corporate governancemechanisms on performance using quantile regression so as to compare and to shed light on whetherthere is heterogeneity in the influence of these variables on the performance of listed companies acrossquantiles. The results of the study provide evidence that quantile approach shows inconsistency in theresult with OLS and hence indicating the impact depends on the scale size. This theoretically providesfurther support that OLS may represent a poor estimation approach for the reality of firms.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2021-11-03T16:22:38Z
dc.date.available.none.fl_str_mv 2021-11-03T16:22:38Z
dc.date.issued.fl_str_mv 2016-12-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.other.none.fl_str_mv Artículo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/141
dc.identifier.citation.none.fl_str_mv Shawtari, F. A., Salem, M. A., Hussain, H.I., Alaeddin, O., & Bin Thabit, O. (2016). Corporate governance characteristics and valuation: inferences from quantile regression. Journal of Economics, Finance and Administrative Science, 21(41), 81-88. https://​doi.org/10.1016/j.jefas.2016.06.004
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12640/2608
dc.identifier.doi.none.fl_str_mv https://​doi.org/10.1016/j.jefas.2016.06.004
url https://revistas.esan.edu.pe/index.php/jefas/article/view/141
https://hdl.handle.net/20.500.12640/2608
https://​doi.org/10.1016/j.jefas.2016.06.004
identifier_str_mv Shawtari, F. A., Salem, M. A., Hussain, H.I., Alaeddin, O., & Bin Thabit, O. (2016). Corporate governance characteristics and valuation: inferences from quantile regression. Journal of Economics, Finance and Administrative Science, 21(41), 81-88. https://​doi.org/10.1016/j.jefas.2016.06.004
dc.language.none.fl_str_mv Inglés
dc.language.iso.none.fl_str_mv eng
language_invalid_str_mv Inglés
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2218-0648
dc.relation.uri.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/141/111
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.source.none.fl_str_mv reponame:ESAN-Institucional
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str ESAN-Institucional
collection ESAN-Institucional
bitstream.url.fl_str_mv https://repositorio.esan.edu.pe/bitstreams/54dfd298-43d1-4a51-99e9-c22dc2e694d8/download
https://repositorio.esan.edu.pe/bitstreams/92438795-f2ad-459a-adba-e7800a74b134/download
https://repositorio.esan.edu.pe/bitstreams/92bc10d3-f4ce-4c5c-8612-c26b9aa32af4/download
https://repositorio.esan.edu.pe/bitstreams/72c19542-aad9-48f0-b0d9-85faea125b81/download
bitstream.checksum.fl_str_mv 77a7c423c1cf8f2caea64b2cf971004b
2884024e7b8a344ea567146ef17405bb
89c2f2080ab141826554ea394dcba73c
53f6a60751a7b8f61a2d1032490505f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional ESAN
repository.mail.fl_str_mv repositorio@esan.edu.pe
_version_ 1843261685008171008
spelling Shawtari, Fekri AliSalem, Milad AbdelnabiHussain, Hafezali IqbalAlaeddin, OmarBin Thabit, Omer2021-11-03T16:22:38Z2021-11-03T16:22:38Z2016-12-01https://revistas.esan.edu.pe/index.php/jefas/article/view/141Shawtari, F. A., Salem, M. A., Hussain, H.I., Alaeddin, O., & Bin Thabit, O. (2016). Corporate governance characteristics and valuation: inferences from quantile regression. Journal of Economics, Finance and Administrative Science, 21(41), 81-88. https://​doi.org/10.1016/j.jefas.2016.06.004https://hdl.handle.net/20.500.12640/2608https://​doi.org/10.1016/j.jefas.2016.06.004Prior literature on corporate governance and performance provides mixed evidence on the impact ofvarious corporate governance measures on performance indicators. However, most of literatures adoptthe Ordinary Least Square (OLS). This method is based on the central tendency, which may not appro-priately represent the reality in cases where the dependent variable ranges between upper and lowervalues and hence the relationship may not be homogenous across different percentiles of the dependentvariables. A variable having a positive impact based on the central tendency for firms may not be the casefor the firms in the upper or lower bounds. Thus, estimating the means using OLS may not reflect andrepresent the heterogeneity in the estimated relationship. Therefore, quantile regression estimates therelationship at any point conditional on the distribution of dependent variable. This would enable us togenerate various estimated coefficient at certain quantile of dependent variable. Therefore, the objectiveof the study is twofold. First, this study aims to investigate the relationship between corporate gover-nance and performance using OLS. Second, this work further explores the impact of corporate governancemechanisms on performance using quantile regression so as to compare and to shed light on whetherthere is heterogeneity in the influence of these variables on the performance of listed companies acrossquantiles. The results of the study provide evidence that quantile approach shows inconsistency in theresult with OLS and hence indicating the impact depends on the scale size. This theoretically providesfurther support that OLS may represent a poor estimation approach for the reality of firms.La literatura previa sobre gobierno corporativo y desempe ̃no aporta una evidencia mixta del impactode las diversas mediciones del mismo sobre los indicadores del desempe ̃no. Sin embargo, gran parte dela literatura adopta el método de los mínimos cuadrados ordinarios (MCO). Dicho método se basa en latendencia central, que puede no constituir una representación adecuada de la realidad en aquellos casosen los que la variable dependiente oscila entre los valores superior e inferior y, por tanto, la relaciónpuede no ser homogénea a lo largo de los diferentes percentiles de las variables dependientes. Unavariable que tenga un impacto positivo basado en la tendencia central para las empresas puede no serel caso para aquellas posicionadas en los límites superior o inferior. Entonces, el cálculo de las mediascon el uso del método MCO no reflejaría ni representaría la heterogeneidad en la relación estimada. Porello, la regresión de cuantiles calcula la relación en cualquier punto, supeditado a la distribución de la variable dependiente. Esto nos permitiría generar diversos coeficientes estimados en cualquier cuantil dela variable dependiente. En consecuencia, el objetivo de este estudio es doble: investiga la relación entre elgobierno corporativo y el desempe ̃no, utilizando el método MCO y explora el impacto de los mecanismosdel gobierno corporativo sobre el desempe ̃no, utilizando la regresión de cuantiles, a fin de comparar yarrojar luz sobre la posibilidad de que exista heterogeneidad en la influencia de dichas variables sobreel desempe ̃no de las empresas cotizadas, a lo largo de los cuantiles. Los resultados del estudio aportanevidencia acerca de que el enfoque de los cuantiles es inconsistente con el método MCO y, por tanto,indica que el impacto depende del tama ̃no de la escala. Esto respalda, además, el hecho de que el métodoMCO puede representar un enfoque de cálculo más débil para la realidad de las empresas.application/pdfInglésengUniversidad ESAN. ESAN EdicionesPEurn:issn:2218-0648https://revistas.esan.edu.pe/index.php/jefas/article/view/141/111Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/PerformanceCorporate governanceOLSQuantile regressionDesempeñoGobierno corporativoOLSRegresión de cuantileshttps://purl.org/pe-repo/ocde/ford#5.02.04Corporate governance characteristics and valuation: inferences from quantile regressioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANJournal of Economics, Finance and Administrative Science88418121Acceso abiertoTHUMBNAIL41.jpg41.jpgimage/jpeg45078https://repositorio.esan.edu.pe/bitstreams/54dfd298-43d1-4a51-99e9-c22dc2e694d8/download77a7c423c1cf8f2caea64b2cf971004bMD51falseAnonymousREADJEFAS-41-2016-81-88.pdf.jpgJEFAS-41-2016-81-88.pdf.jpgGenerated Thumbnailimage/jpeg5582https://repositorio.esan.edu.pe/bitstreams/92438795-f2ad-459a-adba-e7800a74b134/download2884024e7b8a344ea567146ef17405bbMD54falseAnonymousREADORIGINALJEFAS-41-2016-81-88.pdfTexto completoapplication/pdf478995https://repositorio.esan.edu.pe/bitstreams/92bc10d3-f4ce-4c5c-8612-c26b9aa32af4/download89c2f2080ab141826554ea394dcba73cMD52trueAnonymousREADTEXTJEFAS-41-2016-81-88.pdf.txtJEFAS-41-2016-81-88.pdf.txtExtracted texttext/plain94508https://repositorio.esan.edu.pe/bitstreams/72c19542-aad9-48f0-b0d9-85faea125b81/download53f6a60751a7b8f61a2d1032490505f9MD53falseAnonymousREAD20.500.12640/2608oai:repositorio.esan.edu.pe:20.500.12640/26082025-07-09 09:30:04.35https://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe
score 13.913218
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).