Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank

Descripción del Articulo

Purpose – Loan default risk or credit risk evaluation is important to financial institutions which provide loans to businesses and individuals. Loans carry the risk of being defaulted. To understand the risk levels of credit users (corporations and individuals), credit providers (bankers) normally c...

Descripción completa

Detalles Bibliográficos
Autor: Krichene, Aida
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/2601
Enlace del recurso:https://revistas.esan.edu.pe/index.php/jefas/article/view/126
https://hdl.handle.net/20.500.12640/2601
https://doi.org/10.1108/JEFAS-02-2017-0039
Nivel de acceso:acceso abierto
Materia:ROC curve
Risk assessment
Default risk
Banking sector
Bayesian classifier algorithm
Curva ROC
Evaluación de riesgos
Riesgo de incumplimiento
Sector bancario
Algoritmo clasificador bayesiano
https://purl.org/pe-repo/ocde/ford#5.02.04
id ESAN_80a204efbd36f0fb68b130c19d2d3b4f
oai_identifier_str oai:repositorio.esan.edu.pe:20.500.12640/2601
network_acronym_str ESAN
network_name_str ESAN-Institucional
repository_id_str 4835
dc.title.en_EN.fl_str_mv Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank
title Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank
spellingShingle Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank
Krichene, Aida
ROC curve
Risk assessment
Default risk
Banking sector
Bayesian classifier algorithm
Curva ROC
Evaluación de riesgos
Riesgo de incumplimiento
Sector bancario
Algoritmo clasificador bayesiano
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank
title_full Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank
title_fullStr Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank
title_full_unstemmed Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank
title_sort Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank
author Krichene, Aida
author_facet Krichene, Aida
author_role author
dc.contributor.author.fl_str_mv Krichene, Aida
dc.subject.en_EN.fl_str_mv ROC curve
Risk assessment
Default risk
Banking sector
Bayesian classifier algorithm
topic ROC curve
Risk assessment
Default risk
Banking sector
Bayesian classifier algorithm
Curva ROC
Evaluación de riesgos
Riesgo de incumplimiento
Sector bancario
Algoritmo clasificador bayesiano
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.es_ES.fl_str_mv Curva ROC
Evaluación de riesgos
Riesgo de incumplimiento
Sector bancario
Algoritmo clasificador bayesiano
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description Purpose – Loan default risk or credit risk evaluation is important to financial institutions which provide loans to businesses and individuals. Loans carry the risk of being defaulted. To understand the risk levels of credit users (corporations and individuals), credit providers (bankers) normally collect vast amounts of information on borrowers. Statistical predictive analytic techniques can be used to analyse or to determine the risk levels involved in loans. This paper aims to address the question of default prediction of short-term loans for a Tunisian commercial bank. Design/methodology/approach – The authors have used a database of 924 files of credits granted to industrial Tunisian companies by a commercial bank in the years 2003, 2004, 2005 and 2006. The naive Bayesian classifier algorithm was used, and the results show that the good classification rate is of the order of 63.85 per cent. The default probability is explained by the variables measuring working capital, leverage, solvency, profitability and cash flow indicators. Findings – The results of the validation test show that the good classification rate is of the order of 58.66 per cent; nevertheless, the error types I and II remain relatively high at 42.42 and 40.47 per cent, respectively. A receiver operating characteristic curve is plotted to evaluate the performance of the model. The result shows that the area under the curve criterion is of the order of 69 per cent. Originality/value – The paper highlights the fact that the Tunisian central bank obliged all commercial banks to conduct a survey study to collect qualitative data for better credit notation of the borrowers.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2021-11-03T16:18:47Z
dc.date.available.none.fl_str_mv 2021-11-03T16:18:47Z
dc.date.issued.fl_str_mv 2017-06-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.other.none.fl_str_mv Artículo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/126
dc.identifier.citation.none.fl_str_mv Krichene, A. (2017). Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank. Journal of Economics, Finance and Administrative Science, 22(42), 3-24. https://doi.org/10.1108/JEFAS-02-2017-0039
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12640/2601
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1108/JEFAS-02-2017-0039
url https://revistas.esan.edu.pe/index.php/jefas/article/view/126
https://hdl.handle.net/20.500.12640/2601
https://doi.org/10.1108/JEFAS-02-2017-0039
identifier_str_mv Krichene, A. (2017). Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank. Journal of Economics, Finance and Administrative Science, 22(42), 3-24. https://doi.org/10.1108/JEFAS-02-2017-0039
dc.language.none.fl_str_mv Inglés
dc.language.iso.none.fl_str_mv eng
language_invalid_str_mv Inglés
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2218-0648
dc.relation.uri.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/126/100
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.source.none.fl_str_mv reponame:ESAN-Institucional
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str ESAN-Institucional
collection ESAN-Institucional
bitstream.url.fl_str_mv https://repositorio.esan.edu.pe/bitstreams/c3d73a4e-e0cc-4888-a871-688f4d55baea/download
https://repositorio.esan.edu.pe/bitstreams/5c7c3d9e-11eb-4c46-8b42-16e479530c55/download
https://repositorio.esan.edu.pe/bitstreams/299c96bb-44fd-453f-8c74-a90d4252ffd1/download
https://repositorio.esan.edu.pe/bitstreams/caf4185c-9c59-4585-93a8-79a4ea20bd3e/download
bitstream.checksum.fl_str_mv 0b3b58918313ec1b34477bb4ff530e80
1e4e07fd1d5252007e8907b5c244bbf2
259367a0a72f77cc9d9058a8f3ed48ec
6019e4b17ca1d39f37f2a31fe4eeffc7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional ESAN
repository.mail.fl_str_mv repositorio@esan.edu.pe
_version_ 1843261801096019968
spelling Krichene, Aida2021-11-03T16:18:47Z2021-11-03T16:18:47Z2017-06-01https://revistas.esan.edu.pe/index.php/jefas/article/view/126Krichene, A. (2017). Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bank. Journal of Economics, Finance and Administrative Science, 22(42), 3-24. https://doi.org/10.1108/JEFAS-02-2017-0039https://hdl.handle.net/20.500.12640/2601https://doi.org/10.1108/JEFAS-02-2017-0039Purpose – Loan default risk or credit risk evaluation is important to financial institutions which provide loans to businesses and individuals. Loans carry the risk of being defaulted. To understand the risk levels of credit users (corporations and individuals), credit providers (bankers) normally collect vast amounts of information on borrowers. Statistical predictive analytic techniques can be used to analyse or to determine the risk levels involved in loans. This paper aims to address the question of default prediction of short-term loans for a Tunisian commercial bank. Design/methodology/approach – The authors have used a database of 924 files of credits granted to industrial Tunisian companies by a commercial bank in the years 2003, 2004, 2005 and 2006. The naive Bayesian classifier algorithm was used, and the results show that the good classification rate is of the order of 63.85 per cent. The default probability is explained by the variables measuring working capital, leverage, solvency, profitability and cash flow indicators. Findings – The results of the validation test show that the good classification rate is of the order of 58.66 per cent; nevertheless, the error types I and II remain relatively high at 42.42 and 40.47 per cent, respectively. A receiver operating characteristic curve is plotted to evaluate the performance of the model. The result shows that the area under the curve criterion is of the order of 69 per cent. Originality/value – The paper highlights the fact that the Tunisian central bank obliged all commercial banks to conduct a survey study to collect qualitative data for better credit notation of the borrowers.Propósito – El riesgo de incumplimiento de préstamos o la evaluación del riesgo de crédito es importante para las instituciones financieras que otorgan préstamos a empresas e individuos. Existe el riesgo de que el pago de préstamos no se cumpla. Para entender los niveles de riesgo de los usuarios de crédito (corporaciones e individuos), los proveedores de crédito (banqueros) normalmente recogen gran cantidad de información sobre los prestatarios. Las técnicas analíticas predictivas estadísticas pueden utilizarse para analizar o determinar los niveles de riesgo involucrados en los préstamos. En este artículo abordamos la cuestión de la predicción por defecto de los préstamos a corto plazo para un banco comercial tunecino. Diseño/metodología/enfoque – Utilizamos una base de datos de 924 archivos de créditos concedidos a empresas industriales tunecinas por un banco comercial en 2003, 2004, 2005 y 2006. El algoritmo bayesiano de clasificadores se llevó a cabo y los resultados muestran que la tasa de clasificación buena es del orden del 63.85%. La probabilidad de incumplimiento se explica por las variables que miden el capital de trabajo, el apalancamiento, la solvencia, la rentabilidad y los indicadores de flujo de efectivo. Hallazgos – Los resultados de la prueba de validación muestran que la buena tasa de clasificación es del orden de 58.66% ; sin embargo, los errores tipo I y II permanecen relativamente altos, siendo de 42.42% y 40.47%, respectivamente. Se traza una curva ROC para evaluar el rendimiento del modelo. El resultado muestra que el criterio de área bajo curva (AUC, por sus siglas en inglés) es del orden del 69%. Originalidad/valor – El documento destaca el hecho de que el Banco Central tunecino obligó a todas las entidades del sector llevar a cabo un estudio de encuesta para recopilar datos cualitativos para un mejor registro de crédito de los prestatarios.application/pdfInglésengUniversidad ESAN. ESAN EdicionesPEurn:issn:2218-0648https://revistas.esan.edu.pe/index.php/jefas/article/view/126/100Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/ROC curveRisk assessmentDefault riskBanking sectorBayesian classifier algorithmCurva ROCEvaluación de riesgosRiesgo de incumplimientoSector bancarioAlgoritmo clasificador bayesianohttps://purl.org/pe-repo/ocde/ford#5.02.04Using a naive Bayesian classifier methodology for loan risk assessment: evidence from a Tunisian commercial bankinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANJournal of Economics, Finance and Administrative Science2442322Acceso abiertoTHUMBNAIL42.jpg42.jpgimage/jpeg64641https://repositorio.esan.edu.pe/bitstreams/c3d73a4e-e0cc-4888-a871-688f4d55baea/download0b3b58918313ec1b34477bb4ff530e80MD51falseAnonymousREADJEFAS-42-2017-3-24.pdf.jpgJEFAS-42-2017-3-24.pdf.jpgGenerated Thumbnailimage/jpeg5952https://repositorio.esan.edu.pe/bitstreams/5c7c3d9e-11eb-4c46-8b42-16e479530c55/download1e4e07fd1d5252007e8907b5c244bbf2MD54falseAnonymousREADORIGINALJEFAS-42-2017-3-24.pdfTexto completoapplication/pdf1155734https://repositorio.esan.edu.pe/bitstreams/299c96bb-44fd-453f-8c74-a90d4252ffd1/download259367a0a72f77cc9d9058a8f3ed48ecMD52trueAnonymousREADTEXTJEFAS-42-2017-3-24.pdf.txtJEFAS-42-2017-3-24.pdf.txtExtracted texttext/plain61973https://repositorio.esan.edu.pe/bitstreams/caf4185c-9c59-4585-93a8-79a4ea20bd3e/download6019e4b17ca1d39f37f2a31fe4eeffc7MD53falseAnonymousREAD20.500.12640/2601oai:repositorio.esan.edu.pe:20.500.12640/26012025-07-09 09:29:57.12https://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).