Joint non-parametric estimation of mean and auto-covariances for Gaussian processes
Descripción del Articulo
Gaussian processes that can be decomposed into a smooth mean function and a stationary autocorrelated noise process are considered and a fully automatic nonparametric method to simultaneous estimation of mean and auto-covariance functions of such processes is developed. The proposed empirical Bayes...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad ESAN |
| Repositorio: | ESAN-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.esan.edu.pe:20.500.12640/3299 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12640/3299 https://doi.org/10.1016/j.csda.2022.107519 |
| Nivel de acceso: | acceso abierto |
| Materia: | Demmler-Reinsch basis Empirical Bayes Spectral density Stationary process Base de Demmler-Reinsch Bayes empírico Densidad espectral Proceso estacionario https://purl.org/pe-repo/ocde/ford#2.11.00 |
| id |
ESAN_6dd98905a2d9fed1fb330c6accd10308 |
|---|---|
| oai_identifier_str |
oai:repositorio.esan.edu.pe:20.500.12640/3299 |
| network_acronym_str |
ESAN |
| network_name_str |
ESAN-Institucional |
| repository_id_str |
4835 |
| spelling |
Krivobokova, TatyanaSerra, PauloRosales, FranciscoKlockmann, Karolina2023-01-23T02:17:22Z2023-01-23T02:17:22Z2022-05-05Krivobokova, T., Serra, P., Rosales, F., & Klockmann, K. (2022). Joint non-parametric estimation of mean and auto-covariances for Gaussian processes. Computational Statistics and Data Analysis, 173(2022), 107519. https://doi.org/10.1016/j.csda.2022.107519https://hdl.handle.net/20.500.12640/3299https://doi.org/10.1016/j.csda.2022.107519Gaussian processes that can be decomposed into a smooth mean function and a stationary autocorrelated noise process are considered and a fully automatic nonparametric method to simultaneous estimation of mean and auto-covariance functions of such processes is developed. The proposed empirical Bayes approach is data-driven, numerically efficient, and allows for the construction of confidence sets for the mean function. Performance is demonstrated in simulations and real data analysis. The method is implemented in the R package eBsc.application/pdfInglésengElsevierInternational Association for Statistical ComputingComputational and Methodological StatisticsNLurn:issn:0167-94731urn:issn:1872-7352https://www.sciencedirect.com/science/article/pii/S0167947322000998/pdfft?md5=b4009fe50e464f6c2c4717b7b42e1541&pid=1-s2.0-S0167947322000998-main.pdfinfo:eu-repo/semantics/openAccessAttribution 4.0 Internationalhttps://creativecommons.org/licenses/by/4.0/Demmler-Reinsch basisEmpirical BayesSpectral densityStationary processBase de Demmler-ReinschBayes empíricoDensidad espectralProceso estacionariohttps://purl.org/pe-repo/ocde/ford#2.11.00Joint non-parametric estimation of mean and auto-covariances for Gaussian processesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANhttps://orcid.org/0000-0003-2347-632XAcceso abiertoComputational Statistics and Data Analysis107519173ORIGINALrosales_2022.pdfrosales_2022.pdfTexto completoapplication/pdf694777https://repositorio.esan.edu.pe/bitstreams/07acb636-f7bf-4575-ae03-7f89f9bdf010/download649bf7610de2a221cdecd4fa140542c7MD51trueAnonymousREADTHUMBNAILrosales_2022.pdf.jpgrosales_2022.pdf.jpgGenerated Thumbnailimage/jpeg5457https://repositorio.esan.edu.pe/bitstreams/5ee9770d-b60c-4532-819e-ef5587048e6d/downloade412ad7ea20b292f130d47a8e66bd416MD55falseAnonymousREADTEXTrosales_2022.pdf.txtrosales_2022.pdf.txtExtracted texttext/plain67154https://repositorio.esan.edu.pe/bitstreams/07dd09b0-a38d-4bc1-b914-305aceac0e5d/downloadf6e3cbb158e9baea33f7b96985f824fdMD54falseAnonymousREAD20.500.12640/3299oai:repositorio.esan.edu.pe:20.500.12640/32992024-11-25 19:41:21.422https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe |
| dc.title.en_EN.fl_str_mv |
Joint non-parametric estimation of mean and auto-covariances for Gaussian processes |
| title |
Joint non-parametric estimation of mean and auto-covariances for Gaussian processes |
| spellingShingle |
Joint non-parametric estimation of mean and auto-covariances for Gaussian processes Krivobokova, Tatyana Demmler-Reinsch basis Empirical Bayes Spectral density Stationary process Base de Demmler-Reinsch Bayes empírico Densidad espectral Proceso estacionario https://purl.org/pe-repo/ocde/ford#2.11.00 |
| title_short |
Joint non-parametric estimation of mean and auto-covariances for Gaussian processes |
| title_full |
Joint non-parametric estimation of mean and auto-covariances for Gaussian processes |
| title_fullStr |
Joint non-parametric estimation of mean and auto-covariances for Gaussian processes |
| title_full_unstemmed |
Joint non-parametric estimation of mean and auto-covariances for Gaussian processes |
| title_sort |
Joint non-parametric estimation of mean and auto-covariances for Gaussian processes |
| author |
Krivobokova, Tatyana |
| author_facet |
Krivobokova, Tatyana Serra, Paulo Rosales, Francisco Klockmann, Karolina |
| author_role |
author |
| author2 |
Serra, Paulo Rosales, Francisco Klockmann, Karolina |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Krivobokova, Tatyana Serra, Paulo Rosales, Francisco Klockmann, Karolina |
| dc.subject.en_EN.fl_str_mv |
Demmler-Reinsch basis Empirical Bayes Spectral density Stationary process |
| topic |
Demmler-Reinsch basis Empirical Bayes Spectral density Stationary process Base de Demmler-Reinsch Bayes empírico Densidad espectral Proceso estacionario https://purl.org/pe-repo/ocde/ford#2.11.00 |
| dc.subject.es_ES.fl_str_mv |
Base de Demmler-Reinsch Bayes empírico Densidad espectral Proceso estacionario |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.00 |
| description |
Gaussian processes that can be decomposed into a smooth mean function and a stationary autocorrelated noise process are considered and a fully automatic nonparametric method to simultaneous estimation of mean and auto-covariance functions of such processes is developed. The proposed empirical Bayes approach is data-driven, numerically efficient, and allows for the construction of confidence sets for the mean function. Performance is demonstrated in simulations and real data analysis. The method is implemented in the R package eBsc. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2023-01-23T02:17:22Z |
| dc.date.available.none.fl_str_mv |
2023-01-23T02:17:22Z |
| dc.date.issued.fl_str_mv |
2022-05-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.other.none.fl_str_mv |
Artículo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.citation.none.fl_str_mv |
Krivobokova, T., Serra, P., Rosales, F., & Klockmann, K. (2022). Joint non-parametric estimation of mean and auto-covariances for Gaussian processes. Computational Statistics and Data Analysis, 173(2022), 107519. https://doi.org/10.1016/j.csda.2022.107519 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12640/3299 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.csda.2022.107519 |
| identifier_str_mv |
Krivobokova, T., Serra, P., Rosales, F., & Klockmann, K. (2022). Joint non-parametric estimation of mean and auto-covariances for Gaussian processes. Computational Statistics and Data Analysis, 173(2022), 107519. https://doi.org/10.1016/j.csda.2022.107519 |
| url |
https://hdl.handle.net/20.500.12640/3299 https://doi.org/10.1016/j.csda.2022.107519 |
| dc.language.none.fl_str_mv |
Inglés |
| dc.language.iso.none.fl_str_mv |
eng |
| language_invalid_str_mv |
Inglés |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:0167-94731 urn:issn:1872-7352 |
| dc.relation.uri.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0167947322000998/pdfft?md5=b4009fe50e464f6c2c4717b7b42e1541&pid=1-s2.0-S0167947322000998-main.pdf |
| dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.en.fl_str_mv |
Attribution 4.0 International |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier International Association for Statistical Computing Computational and Methodological Statistics |
| dc.publisher.country.none.fl_str_mv |
NL |
| publisher.none.fl_str_mv |
Elsevier International Association for Statistical Computing Computational and Methodological Statistics |
| dc.source.none.fl_str_mv |
reponame:ESAN-Institucional instname:Universidad ESAN instacron:ESAN |
| instname_str |
Universidad ESAN |
| instacron_str |
ESAN |
| institution |
ESAN |
| reponame_str |
ESAN-Institucional |
| collection |
ESAN-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.esan.edu.pe/bitstreams/07acb636-f7bf-4575-ae03-7f89f9bdf010/download https://repositorio.esan.edu.pe/bitstreams/5ee9770d-b60c-4532-819e-ef5587048e6d/download https://repositorio.esan.edu.pe/bitstreams/07dd09b0-a38d-4bc1-b914-305aceac0e5d/download |
| bitstream.checksum.fl_str_mv |
649bf7610de2a221cdecd4fa140542c7 e412ad7ea20b292f130d47a8e66bd416 f6e3cbb158e9baea33f7b96985f824fd |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional ESAN |
| repository.mail.fl_str_mv |
repositorio@esan.edu.pe |
| _version_ |
1843261916557869056 |
| score |
13.937372 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).