Fenchel-Moreau conjugation for lower semi-continuous functions
Descripción del Articulo
The authors would like to thank Prof. Alfredo N. Iusem for useful discussions about the subject. We thank Juan-Enrique Martı´nez-Legaz, Tyrrell Rockafellar, Alberto Seeger and Benar Svaiter for their valuable comments. We also thank Juan-Enrique Martı´nez-Legaz for sending us the references [4,7–10]...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2011 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/888 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/888 https://doi.org/10.1080/02331934.2010.507273 |
Nivel de acceso: | acceso abierto |
Materia: | proper function Fenchel–Moreau conjugate https://purl.org/pe-repo/ocde/ford#1.01.00 |
id |
CONC_fcbe86cd6eab1a2cd7d8f70e50c362db |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/888 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Fenchel-Moreau conjugation for lower semi-continuous functions |
title |
Fenchel-Moreau conjugation for lower semi-continuous functions |
spellingShingle |
Fenchel-Moreau conjugation for lower semi-continuous functions Cotrina J. proper function Fenchel–Moreau conjugate https://purl.org/pe-repo/ocde/ford#1.01.00 |
title_short |
Fenchel-Moreau conjugation for lower semi-continuous functions |
title_full |
Fenchel-Moreau conjugation for lower semi-continuous functions |
title_fullStr |
Fenchel-Moreau conjugation for lower semi-continuous functions |
title_full_unstemmed |
Fenchel-Moreau conjugation for lower semi-continuous functions |
title_sort |
Fenchel-Moreau conjugation for lower semi-continuous functions |
author |
Cotrina J. |
author_facet |
Cotrina J. Karas E.W. Ribeiro A.A. Sosa W. Yuan J.Y. |
author_role |
author |
author2 |
Karas E.W. Ribeiro A.A. Sosa W. Yuan J.Y. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Cotrina J. Karas E.W. Ribeiro A.A. Sosa W. Yuan J.Y. |
dc.subject.none.fl_str_mv |
proper function |
topic |
proper function Fenchel–Moreau conjugate https://purl.org/pe-repo/ocde/ford#1.01.00 |
dc.subject.es_PE.fl_str_mv |
Fenchel–Moreau conjugate |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
description |
The authors would like to thank Prof. Alfredo N. Iusem for useful discussions about the subject. We thank Juan-Enrique Martı´nez-Legaz, Tyrrell Rockafellar, Alberto Seeger and Benar Svaiter for their valuable comments. We also thank Juan-Enrique Martı´nez-Legaz for sending us the references [4,7–10]. W. Sosa likes to thank Prof. Carlos Henrique dos Santos and Prof. Raul Prado for their kindest hospitality during his visiting at Department of Mathematics, Federal University of Parana´, Curitiba, Brazil. This work was partially supported by PRONEX – Optimization, CNPq, CAPES, Fundac¸a˜o Arauca´ria, Brazil and CONCYTEC (projects STIC-AMSUD), Peru. |
publishDate |
2011 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/888 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1080/02331934.2010.507273 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-84858226482 |
url |
https://hdl.handle.net/20.500.12390/888 https://doi.org/10.1080/02331934.2010.507273 |
identifier_str_mv |
2-s2.0-84858226482 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Optimization |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175591408959488 |
spelling |
Publicationrp02278500rp02343600rp02342600rp01544500rp02344600Cotrina J.Karas E.W.Ribeiro A.A.Sosa W.Yuan J.Y.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2011https://hdl.handle.net/20.500.12390/888https://doi.org/10.1080/02331934.2010.5072732-s2.0-84858226482The authors would like to thank Prof. Alfredo N. Iusem for useful discussions about the subject. We thank Juan-Enrique Martı´nez-Legaz, Tyrrell Rockafellar, Alberto Seeger and Benar Svaiter for their valuable comments. We also thank Juan-Enrique Martı´nez-Legaz for sending us the references [4,7–10]. W. Sosa likes to thank Prof. Carlos Henrique dos Santos and Prof. Raul Prado for their kindest hospitality during his visiting at Department of Mathematics, Federal University of Parana´, Curitiba, Brazil. This work was partially supported by PRONEX – Optimization, CNPq, CAPES, Fundac¸a˜o Arauca´ria, Brazil and CONCYTEC (projects STIC-AMSUD), Peru.We introduce a modification of Fenchel's conjugation which is a particular case of Moreau's conjugation. We obtain good properties such as convexity of the conjugate function even though the function is not convex. We also introduce the concept of conjugate dual space as a class of continuous operators, while in the Fenchel conjugation the conjugate dual space is the classical topological dual space. Finally, we present some examples for illustrating the difference between the Fenchel–Moreau conjugation and our modification.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengTaylor & FrancisOptimizationinfo:eu-repo/semantics/openAccessproper functionFenchel–Moreau conjugate-1https://purl.org/pe-repo/ocde/ford#1.01.00-1Fenchel-Moreau conjugation for lower semi-continuous functionsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/888oai:repositorio.concytec.gob.pe:20.500.12390/8882024-05-30 15:51:04.998http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="6eb1c285-593b-49e9-941b-61231b7685ad"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Fenchel-Moreau conjugation for lower semi-continuous functions</Title> <PublishedIn> <Publication> <Title>Optimization</Title> </Publication> </PublishedIn> <PublicationDate>2011</PublicationDate> <DOI>https://doi.org/10.1080/02331934.2010.507273</DOI> <SCP-Number>2-s2.0-84858226482</SCP-Number> <Authors> <Author> <DisplayName>Cotrina J.</DisplayName> <Person id="rp02278" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Karas E.W.</DisplayName> <Person id="rp02343" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ribeiro A.A.</DisplayName> <Person id="rp02342" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sosa W.</DisplayName> <Person id="rp01544" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Yuan J.Y.</DisplayName> <Person id="rp02344" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Taylor & Francis</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>proper function</Keyword> <Keyword>Fenchel–Moreau conjugate</Keyword> <Abstract>We introduce a modification of Fenchel's conjugation which is a particular case of Moreau's conjugation. We obtain good properties such as convexity of the conjugate function even though the function is not convex. We also introduce the concept of conjugate dual space as a class of continuous operators, while in the Fenchel conjugation the conjugate dual space is the classical topological dual space. Finally, we present some examples for illustrating the difference between the Fenchel–Moreau conjugation and our modification.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).