Algoritmo de diagnóstico de tuberculosis mediante detección de colonias en videos de cultivos MODS utilizando segmentación Max-Tree y redes neuronales MCNN

Descripción del Articulo

The following work proposes an automatic algorithm for classifying videos of MODS tuberculosis samples. The video processing stage applies edge enhancement with the Phase Stretch Transform technique, after which it uses the max-tree method to spatiotemporally segment and track the objects of interes...

Descripción completa

Detalles Bibliográficos
Autor: Sánchez Huapaya, Alonso Sebastián
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1486
Enlace del recurso:https://hdl.handle.net/20.500.12390/1486
Nivel de acceso:acceso abierto
Materia:Segmentación Max-Tree
Redes neuronales
Algoritmo de diagnóstico
https://purl.org/pe-repo/ocde/ford#2.02.01
id CONC_fb21e2999ed02b543c51892745171ff9
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1486
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Algoritmo de diagnóstico de tuberculosis mediante detección de colonias en videos de cultivos MODS utilizando segmentación Max-Tree y redes neuronales MCNN
title Algoritmo de diagnóstico de tuberculosis mediante detección de colonias en videos de cultivos MODS utilizando segmentación Max-Tree y redes neuronales MCNN
spellingShingle Algoritmo de diagnóstico de tuberculosis mediante detección de colonias en videos de cultivos MODS utilizando segmentación Max-Tree y redes neuronales MCNN
Sánchez Huapaya, Alonso Sebastián
Segmentación Max-Tree
Redes neuronales
Algoritmo de diagnóstico
https://purl.org/pe-repo/ocde/ford#2.02.01
title_short Algoritmo de diagnóstico de tuberculosis mediante detección de colonias en videos de cultivos MODS utilizando segmentación Max-Tree y redes neuronales MCNN
title_full Algoritmo de diagnóstico de tuberculosis mediante detección de colonias en videos de cultivos MODS utilizando segmentación Max-Tree y redes neuronales MCNN
title_fullStr Algoritmo de diagnóstico de tuberculosis mediante detección de colonias en videos de cultivos MODS utilizando segmentación Max-Tree y redes neuronales MCNN
title_full_unstemmed Algoritmo de diagnóstico de tuberculosis mediante detección de colonias en videos de cultivos MODS utilizando segmentación Max-Tree y redes neuronales MCNN
title_sort Algoritmo de diagnóstico de tuberculosis mediante detección de colonias en videos de cultivos MODS utilizando segmentación Max-Tree y redes neuronales MCNN
author Sánchez Huapaya, Alonso Sebastián
author_facet Sánchez Huapaya, Alonso Sebastián
author_role author
dc.contributor.author.fl_str_mv Sánchez Huapaya, Alonso Sebastián
Sánchez Huapaya, Alonso Sebastián
dc.subject.none.fl_str_mv Segmentación Max-Tree
topic Segmentación Max-Tree
Redes neuronales
Algoritmo de diagnóstico
https://purl.org/pe-repo/ocde/ford#2.02.01
dc.subject.es_PE.fl_str_mv Redes neuronales
Algoritmo de diagnóstico
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.01
description The following work proposes an automatic algorithm for classifying videos of MODS tuberculosis samples. The video processing stage applies edge enhancement with the Phase Stretch Transform technique, after which it uses the max-tree method to spatiotemporally segment and track the objects of interest in each day of the video. The individual object classification stage uses dynamic shape attributes of each object to train classic classifiers (Gaussian Naïve Bayes, Support Vector Machine and Gaussian Process Classifier), and a multiscale convolutional neural network (MCNN). Training and evaluation of these individual object classifiers used objects from days as early as 3, up to days as late as 11. The conclusion points that the best classical classifier is based on an SVM, and the best overall classifier is the one with MCNN. The SVM classifier has a precision of 59%, a sensibility of 58% and a specificity of 75%. The MCNN classifier outperforms the SVM in all metrics by more than 20%, except on specificity where SVM is better by 4%: MCNN has a precision of 83%, a sensibility of 83% and a specificity of 71%. In the video classification stage, the results from the object classifiers served as input to build video classifiers. The computation of the evaluation metrics for MCNN-based video classifier only considered days 3, 4 and 5 for each available video. In these time periods, the MCNN obtained a precision of 81%, sensibility of 72% and specificity of 50%. Although none of these metrics achieve a value of 90%, it is important to mention that early day colonies (days 3, 4 and 5) are very similar to detritus or residuals or other non-colony objects in MODS cultures. Besides, samples always have many more non-colonies than colonies; this is, they have a high level of distracting elements. As a consequence, the adequate classification of early day MODS objects is very challenging, and the results are useful as a first-level filter of MODS samples, which allows technicians to focus first on samples with a higher chance of being positive, without discarding the rest.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1486
url https://hdl.handle.net/20.500.12390/1486
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidad Nacional de Ingeniería
publisher.none.fl_str_mv Universidad Nacional de Ingeniería
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883074595160064
spelling Publicationrp04287600rp04287600Sánchez Huapaya, Alonso SebastiánSánchez Huapaya, Alonso Sebastián2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/1486The following work proposes an automatic algorithm for classifying videos of MODS tuberculosis samples. The video processing stage applies edge enhancement with the Phase Stretch Transform technique, after which it uses the max-tree method to spatiotemporally segment and track the objects of interest in each day of the video. The individual object classification stage uses dynamic shape attributes of each object to train classic classifiers (Gaussian Naïve Bayes, Support Vector Machine and Gaussian Process Classifier), and a multiscale convolutional neural network (MCNN). Training and evaluation of these individual object classifiers used objects from days as early as 3, up to days as late as 11. The conclusion points that the best classical classifier is based on an SVM, and the best overall classifier is the one with MCNN. The SVM classifier has a precision of 59%, a sensibility of 58% and a specificity of 75%. The MCNN classifier outperforms the SVM in all metrics by more than 20%, except on specificity where SVM is better by 4%: MCNN has a precision of 83%, a sensibility of 83% and a specificity of 71%. In the video classification stage, the results from the object classifiers served as input to build video classifiers. The computation of the evaluation metrics for MCNN-based video classifier only considered days 3, 4 and 5 for each available video. In these time periods, the MCNN obtained a precision of 81%, sensibility of 72% and specificity of 50%. Although none of these metrics achieve a value of 90%, it is important to mention that early day colonies (days 3, 4 and 5) are very similar to detritus or residuals or other non-colony objects in MODS cultures. Besides, samples always have many more non-colonies than colonies; this is, they have a high level of distracting elements. As a consequence, the adequate classification of early day MODS objects is very challenging, and the results are useful as a first-level filter of MODS samples, which allows technicians to focus first on samples with a higher chance of being positive, without discarding the rest.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecspaUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccessSegmentación Max-TreeRedes neuronales-1Algoritmo de diagnóstico-1https://purl.org/pe-repo/ocde/ford#2.02.01-1Algoritmo de diagnóstico de tuberculosis mediante detección de colonias en videos de cultivos MODS utilizando segmentación Max-Tree y redes neuronales MCNNinfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1486oai:repositorio.concytec.gob.pe:20.500.12390/14862024-05-30 15:37:35.11http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="33a2ea55-f613-4187-b9ec-7dbe789161a8"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Algoritmo de diagnóstico de tuberculosis mediante detección de colonias en videos de cultivos MODS utilizando segmentación Max-Tree y redes neuronales MCNN</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <Authors> <Author> <DisplayName>Sánchez Huapaya, Alonso Sebastián</DisplayName> <Person id="rp04287" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sánchez Huapaya, Alonso Sebastián</DisplayName> <Person id="rp04287" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Universidad Nacional de Ingeniería</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Segmentación Max-Tree</Keyword> <Keyword>Redes neuronales</Keyword> <Keyword>Algoritmo de diagnóstico</Keyword> <Abstract>The following work proposes an automatic algorithm for classifying videos of MODS tuberculosis samples. The video processing stage applies edge enhancement with the Phase Stretch Transform technique, after which it uses the max-tree method to spatiotemporally segment and track the objects of interest in each day of the video. The individual object classification stage uses dynamic shape attributes of each object to train classic classifiers (Gaussian Naïve Bayes, Support Vector Machine and Gaussian Process Classifier), and a multiscale convolutional neural network (MCNN). Training and evaluation of these individual object classifiers used objects from days as early as 3, up to days as late as 11. The conclusion points that the best classical classifier is based on an SVM, and the best overall classifier is the one with MCNN. The SVM classifier has a precision of 59%, a sensibility of 58% and a specificity of 75%. The MCNN classifier outperforms the SVM in all metrics by more than 20%, except on specificity where SVM is better by 4%: MCNN has a precision of 83%, a sensibility of 83% and a specificity of 71%. In the video classification stage, the results from the object classifiers served as input to build video classifiers. The computation of the evaluation metrics for MCNN-based video classifier only considered days 3, 4 and 5 for each available video. In these time periods, the MCNN obtained a precision of 81%, sensibility of 72% and specificity of 50%. Although none of these metrics achieve a value of 90%, it is important to mention that early day colonies (days 3, 4 and 5) are very similar to detritus or residuals or other non-colony objects in MODS cultures. Besides, samples always have many more non-colonies than colonies; this is, they have a high level of distracting elements. As a consequence, the adequate classification of early day MODS objects is very challenging, and the results are useful as a first-level filter of MODS samples, which allows technicians to focus first on samples with a higher chance of being positive, without discarding the rest.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.065285
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).