Best non-polynomial shear deformation theories for cross-ply single skin and sandwich shells
Descripción del Articulo
This paper presents Best Theory Diagrams (BTDs) constructed from non-polynomial terms to identify best shell theories for bending analysis of cross-ply single skin and sandwich shell panels. This structure presents a constant radii of curvature. The shell theories are constructed using Axiomatic/Asy...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2584 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2584 https://doi.org/10.1016/j.engstruct.2019.109678 |
| Nivel de acceso: | acceso abierto |
| Materia: | Shell Axiomatic/Asymptotic Best Theory Diagram Carrera Unified Formulation (CUF) Laminated composite http://purl.org/pe-repo/ocde/ford#1.01.01 |
| id |
CONC_f550ca0f85053aaa4587e9951c33f42c |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2584 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Best non-polynomial shear deformation theories for cross-ply single skin and sandwich shells |
| title |
Best non-polynomial shear deformation theories for cross-ply single skin and sandwich shells |
| spellingShingle |
Best non-polynomial shear deformation theories for cross-ply single skin and sandwich shells Monge J.C. Shell Axiomatic/Asymptotic Best Theory Diagram Carrera Unified Formulation (CUF) Laminated composite http://purl.org/pe-repo/ocde/ford#1.01.01 |
| title_short |
Best non-polynomial shear deformation theories for cross-ply single skin and sandwich shells |
| title_full |
Best non-polynomial shear deformation theories for cross-ply single skin and sandwich shells |
| title_fullStr |
Best non-polynomial shear deformation theories for cross-ply single skin and sandwich shells |
| title_full_unstemmed |
Best non-polynomial shear deformation theories for cross-ply single skin and sandwich shells |
| title_sort |
Best non-polynomial shear deformation theories for cross-ply single skin and sandwich shells |
| author |
Monge J.C. |
| author_facet |
Monge J.C. Mantari J.L. |
| author_role |
author |
| author2 |
Mantari J.L. |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Monge J.C. Mantari J.L. |
| dc.subject.none.fl_str_mv |
Shell |
| topic |
Shell Axiomatic/Asymptotic Best Theory Diagram Carrera Unified Formulation (CUF) Laminated composite http://purl.org/pe-repo/ocde/ford#1.01.01 |
| dc.subject.es_PE.fl_str_mv |
Axiomatic/Asymptotic Best Theory Diagram Carrera Unified Formulation (CUF) Laminated composite |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.01 |
| description |
This paper presents Best Theory Diagrams (BTDs) constructed from non-polynomial terms to identify best shell theories for bending analysis of cross-ply single skin and sandwich shell panels. This structure presents a constant radii of curvature. The shell theories are constructed using Axiomatic/Asymptotic Method (AAM). The different shell theories are described using the Carrera's Unified Formulation. The governing equations are derived from the Principle of Virtual Displacement (PVD). Navier-Type closed form solution is used for solving the bending problem of simply supported doubly curved shell panels subjected to bi-sinusoidal transverse pressure. The BTDs built from non-polynomial functions are compared with Maclaurin expansions. Spherical shell panels with different layer-configurations are investigated. The results demonstrated that the shell models obtained from the BTD using non-polynomial terms can improve the accuracy obtained from Maclaurin expansion for a given number of unknown variables of a displacement field. © 2019 |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2020 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2584 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.engstruct.2019.109678 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85075735818 |
| url |
https://hdl.handle.net/20.500.12390/2584 https://doi.org/10.1016/j.engstruct.2019.109678 |
| identifier_str_mv |
2-s2.0-85075735818 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Engineering Structures |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Elsevier Ltd |
| publisher.none.fl_str_mv |
Elsevier Ltd |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883037942185984 |
| spelling |
Publicationrp05555600rp01200600Monge J.C.Mantari J.L.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2584https://doi.org/10.1016/j.engstruct.2019.1096782-s2.0-85075735818This paper presents Best Theory Diagrams (BTDs) constructed from non-polynomial terms to identify best shell theories for bending analysis of cross-ply single skin and sandwich shell panels. This structure presents a constant radii of curvature. The shell theories are constructed using Axiomatic/Asymptotic Method (AAM). The different shell theories are described using the Carrera's Unified Formulation. The governing equations are derived from the Principle of Virtual Displacement (PVD). Navier-Type closed form solution is used for solving the bending problem of simply supported doubly curved shell panels subjected to bi-sinusoidal transverse pressure. The BTDs built from non-polynomial functions are compared with Maclaurin expansions. Spherical shell panels with different layer-configurations are investigated. The results demonstrated that the shell models obtained from the BTD using non-polynomial terms can improve the accuracy obtained from Maclaurin expansion for a given number of unknown variables of a displacement field. © 2019Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier LtdEngineering Structuresinfo:eu-repo/semantics/openAccessShellAxiomatic/Asymptotic-1Best Theory Diagram-1Carrera Unified Formulation (CUF)-1Laminated composite-1http://purl.org/pe-repo/ocde/ford#1.01.01-1Best non-polynomial shear deformation theories for cross-ply single skin and sandwich shellsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2584oai:repositorio.concytec.gob.pe:20.500.12390/25842024-05-30 16:09:33.004http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="dc1c7bcd-c840-4c7b-b8e1-1468eb102f69"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Best non-polynomial shear deformation theories for cross-ply single skin and sandwich shells</Title> <PublishedIn> <Publication> <Title>Engineering Structures</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1016/j.engstruct.2019.109678</DOI> <SCP-Number>2-s2.0-85075735818</SCP-Number> <Authors> <Author> <DisplayName>Monge J.C.</DisplayName> <Person id="rp05555" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mantari J.L.</DisplayName> <Person id="rp01200" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Shell</Keyword> <Keyword>Axiomatic/Asymptotic</Keyword> <Keyword>Best Theory Diagram</Keyword> <Keyword>Carrera Unified Formulation (CUF)</Keyword> <Keyword>Laminated composite</Keyword> <Abstract>This paper presents Best Theory Diagrams (BTDs) constructed from non-polynomial terms to identify best shell theories for bending analysis of cross-ply single skin and sandwich shell panels. This structure presents a constant radii of curvature. The shell theories are constructed using Axiomatic/Asymptotic Method (AAM). The different shell theories are described using the Carrera's Unified Formulation. The governing equations are derived from the Principle of Virtual Displacement (PVD). Navier-Type closed form solution is used for solving the bending problem of simply supported doubly curved shell panels subjected to bi-sinusoidal transverse pressure. The BTDs built from non-polynomial functions are compared with Maclaurin expansions. Spherical shell panels with different layer-configurations are investigated. The results demonstrated that the shell models obtained from the BTD using non-polynomial terms can improve the accuracy obtained from Maclaurin expansion for a given number of unknown variables of a displacement field. © 2019</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.907143 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).