Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications
Descripción del Articulo
Let F be a singular codimension one holomorphic foliation on a compact complex manifold X of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of F as multiples of complex numbers by integration currents along irreduci...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2653 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2653 https://doi.org/10.4310/AJM.2020.v24.n4.a6 |
Nivel de acceso: | acceso abierto |
Materia: | Residues formula holomorphic foliations Levi-flat hypersurfaces http://purl.org/pe-repo/ocde/ford#2.07.01 |
id |
CONC_e7dea8e7a219a7e2436a7d238c82e244 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2653 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
spelling |
Publicationrp06850600rp06851600Fern´Andez-P´Erez A.T´Amara J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2653https://doi.org/10.4310/AJM.2020.v24.n4.a62-s2.0-85101770142Let F be a singular codimension one holomorphic foliation on a compact complex manifold X of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of F as multiples of complex numbers by integration currents along irreducible complex subvarieties of X. We then prove a formula that determines the Baum-Bott residue of simple almost Liouvillian foliations of codimension one, in terms of Lehmann- Suwa residues, generalizing a result of Marco Brunella. As an application, we give sufficient conditions for the existence of dicritical singularities of a singular real-analytic Levi-flat hypersurface M ⊂ X tangent to F. © 2020 International PressFondo Nacional de Desarrollo Científico y Tecnológico - FondecytengHomology, Homotopy and ApplicationsAsian Journal of Mathematicsinfo:eu-repo/semantics/openAccessResidues formulaholomorphic foliations-1Levi-flat hypersurfaces-1http://purl.org/pe-repo/ocde/ford#2.07.01-1Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applicationsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2653oai:repositorio.concytec.gob.pe:20.500.12390/26532024-05-30 15:25:14.243http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="8e11a37e-9880-4bcb-8806-d3033e427afe"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications</Title> <PublishedIn> <Publication> <Title>Asian Journal of Mathematics</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.4310/AJM.2020.v24.n4.a6</DOI> <SCP-Number>2-s2.0-85101770142</SCP-Number> <Authors> <Author> <DisplayName>Fern´Andez-P´Erez A.</DisplayName> <Person id="rp06850" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>T´Amara J.</DisplayName> <Person id="rp06851" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Homology, Homotopy and Applications</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Residues formula</Keyword> <Keyword>holomorphic foliations</Keyword> <Keyword>Levi-flat hypersurfaces</Keyword> <Abstract>Let F be a singular codimension one holomorphic foliation on a compact complex manifold X of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of F as multiples of complex numbers by integration currents along irreducible complex subvarieties of X. We then prove a formula that determines the Baum-Bott residue of simple almost Liouvillian foliations of codimension one, in terms of Lehmann- Suwa residues, generalizing a result of Marco Brunella. As an application, we give sufficient conditions for the existence of dicritical singularities of a singular real-analytic Levi-flat hypersurface M ⊂ X tangent to F. © 2020 International Press</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
dc.title.none.fl_str_mv |
Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications |
title |
Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications |
spellingShingle |
Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications Fern´Andez-P´Erez A. Residues formula holomorphic foliations Levi-flat hypersurfaces http://purl.org/pe-repo/ocde/ford#2.07.01 |
title_short |
Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications |
title_full |
Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications |
title_fullStr |
Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications |
title_full_unstemmed |
Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications |
title_sort |
Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications |
author |
Fern´Andez-P´Erez A. |
author_facet |
Fern´Andez-P´Erez A. T´Amara J. |
author_role |
author |
author2 |
T´Amara J. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Fern´Andez-P´Erez A. T´Amara J. |
dc.subject.none.fl_str_mv |
Residues formula |
topic |
Residues formula holomorphic foliations Levi-flat hypersurfaces http://purl.org/pe-repo/ocde/ford#2.07.01 |
dc.subject.es_PE.fl_str_mv |
holomorphic foliations Levi-flat hypersurfaces |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.07.01 |
description |
Let F be a singular codimension one holomorphic foliation on a compact complex manifold X of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of F as multiples of complex numbers by integration currents along irreducible complex subvarieties of X. We then prove a formula that determines the Baum-Bott residue of simple almost Liouvillian foliations of codimension one, in terms of Lehmann- Suwa residues, generalizing a result of Marco Brunella. As an application, we give sufficient conditions for the existence of dicritical singularities of a singular real-analytic Levi-flat hypersurface M ⊂ X tangent to F. © 2020 International Press |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2653 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.4310/AJM.2020.v24.n4.a6 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85101770142 |
url |
https://hdl.handle.net/20.500.12390/2653 https://doi.org/10.4310/AJM.2020.v24.n4.a6 |
identifier_str_mv |
2-s2.0-85101770142 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Asian Journal of Mathematics |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Homology, Homotopy and Applications |
publisher.none.fl_str_mv |
Homology, Homotopy and Applications |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175646127849472 |
score |
13.438522 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).