Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications

Descripción del Articulo

Let F be a singular codimension one holomorphic foliation on a compact complex manifold X of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of F as multiples of complex numbers by integration currents along irreduci...

Descripción completa

Detalles Bibliográficos
Autores: Fern´Andez-P´Erez A., T´Amara J.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2653
Enlace del recurso:https://hdl.handle.net/20.500.12390/2653
https://doi.org/10.4310/AJM.2020.v24.n4.a6
Nivel de acceso:acceso abierto
Materia:Residues formula
holomorphic foliations
Levi-flat hypersurfaces
http://purl.org/pe-repo/ocde/ford#2.07.01
id CONC_e7dea8e7a219a7e2436a7d238c82e244
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2653
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp06850600rp06851600Fern´Andez-P´Erez A.T´Amara J.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2653https://doi.org/10.4310/AJM.2020.v24.n4.a62-s2.0-85101770142Let F be a singular codimension one holomorphic foliation on a compact complex manifold X of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of F as multiples of complex numbers by integration currents along irreducible complex subvarieties of X. We then prove a formula that determines the Baum-Bott residue of simple almost Liouvillian foliations of codimension one, in terms of Lehmann- Suwa residues, generalizing a result of Marco Brunella. As an application, we give sufficient conditions for the existence of dicritical singularities of a singular real-analytic Levi-flat hypersurface M ⊂ X tangent to F. © 2020 International PressFondo Nacional de Desarrollo Científico y Tecnológico - FondecytengHomology, Homotopy and ApplicationsAsian Journal of Mathematicsinfo:eu-repo/semantics/openAccessResidues formulaholomorphic foliations-1Levi-flat hypersurfaces-1http://purl.org/pe-repo/ocde/ford#2.07.01-1Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applicationsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2653oai:repositorio.concytec.gob.pe:20.500.12390/26532024-05-30 15:25:14.243http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="8e11a37e-9880-4bcb-8806-d3033e427afe"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications</Title> <PublishedIn> <Publication> <Title>Asian Journal of Mathematics</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.4310/AJM.2020.v24.n4.a6</DOI> <SCP-Number>2-s2.0-85101770142</SCP-Number> <Authors> <Author> <DisplayName>Fern´Andez-P´Erez A.</DisplayName> <Person id="rp06850" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>T´Amara J.</DisplayName> <Person id="rp06851" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Homology, Homotopy and Applications</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Residues formula</Keyword> <Keyword>holomorphic foliations</Keyword> <Keyword>Levi-flat hypersurfaces</Keyword> <Abstract>Let F be a singular codimension one holomorphic foliation on a compact complex manifold X of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of F as multiples of complex numbers by integration currents along irreducible complex subvarieties of X. We then prove a formula that determines the Baum-Bott residue of simple almost Liouvillian foliations of codimension one, in terms of Lehmann- Suwa residues, generalizing a result of Marco Brunella. As an application, we give sufficient conditions for the existence of dicritical singularities of a singular real-analytic Levi-flat hypersurface M ⊂ X tangent to F. © 2020 International Press</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications
title Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications
spellingShingle Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications
Fern´Andez-P´Erez A.
Residues formula
holomorphic foliations
Levi-flat hypersurfaces
http://purl.org/pe-repo/ocde/ford#2.07.01
title_short Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications
title_full Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications
title_fullStr Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications
title_full_unstemmed Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications
title_sort Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications
author Fern´Andez-P´Erez A.
author_facet Fern´Andez-P´Erez A.
T´Amara J.
author_role author
author2 T´Amara J.
author2_role author
dc.contributor.author.fl_str_mv Fern´Andez-P´Erez A.
T´Amara J.
dc.subject.none.fl_str_mv Residues formula
topic Residues formula
holomorphic foliations
Levi-flat hypersurfaces
http://purl.org/pe-repo/ocde/ford#2.07.01
dc.subject.es_PE.fl_str_mv holomorphic foliations
Levi-flat hypersurfaces
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.07.01
description Let F be a singular codimension one holomorphic foliation on a compact complex manifold X of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of F as multiples of complex numbers by integration currents along irreducible complex subvarieties of X. We then prove a formula that determines the Baum-Bott residue of simple almost Liouvillian foliations of codimension one, in terms of Lehmann- Suwa residues, generalizing a result of Marco Brunella. As an application, we give sufficient conditions for the existence of dicritical singularities of a singular real-analytic Levi-flat hypersurface M ⊂ X tangent to F. © 2020 International Press
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2653
dc.identifier.doi.none.fl_str_mv https://doi.org/10.4310/AJM.2020.v24.n4.a6
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85101770142
url https://hdl.handle.net/20.500.12390/2653
https://doi.org/10.4310/AJM.2020.v24.n4.a6
identifier_str_mv 2-s2.0-85101770142
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Asian Journal of Mathematics
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Homology, Homotopy and Applications
publisher.none.fl_str_mv Homology, Homotopy and Applications
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175646127849472
score 13.438522
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).