Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beans

Descripción del Articulo

The contamination of soils by heavy metals is a current problem for agricultural production. Rapid access and reliability to heavy metal concentration such as cadmium is crucial for international trade. In the present study, visible and near infrared (VIS-NIR) spectroscopy, combined with linear and...

Descripción completa

Detalles Bibliográficos
Autores: Checa K., Gamarra M., Soto J., Ipanaque W., Rosa G.L.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2689
Enlace del recurso:https://hdl.handle.net/20.500.12390/2689
https://doi.org/10.1109/CHILECON47746.2019.8987991
Nivel de acceso:acceso abierto
Materia:predicted error cadmium
Cadmium
cocoa bean
control system
data analysis
data mining
heavy metal
hyperspectral image
hyperspectral signature
machine learning algorithms
measured error cadmium
http://purl.org/pe-repo/ocde/ford#4.01.01
id CONC_e50855b2b5a23caea438b468ef49011a
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2689
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beans
title Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beans
spellingShingle Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beans
Checa K.
predicted error cadmium
Cadmium
cocoa bean
control system
data analysis
data mining
heavy metal
hyperspectral image
hyperspectral signature
machine learning algorithms
measured error cadmium
http://purl.org/pe-repo/ocde/ford#4.01.01
title_short Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beans
title_full Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beans
title_fullStr Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beans
title_full_unstemmed Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beans
title_sort Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beans
author Checa K.
author_facet Checa K.
Gamarra M.
Soto J.
Ipanaque W.
Rosa G.L.
author_role author
author2 Gamarra M.
Soto J.
Ipanaque W.
Rosa G.L.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Checa K.
Gamarra M.
Soto J.
Ipanaque W.
Rosa G.L.
dc.subject.none.fl_str_mv predicted error cadmium
topic predicted error cadmium
Cadmium
cocoa bean
control system
data analysis
data mining
heavy metal
hyperspectral image
hyperspectral signature
machine learning algorithms
measured error cadmium
http://purl.org/pe-repo/ocde/ford#4.01.01
dc.subject.es_PE.fl_str_mv Cadmium
cocoa bean
control system
data analysis
data mining
heavy metal
hyperspectral image
hyperspectral signature
machine learning algorithms
measured error cadmium
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#4.01.01
description The contamination of soils by heavy metals is a current problem for agricultural production. Rapid access and reliability to heavy metal concentration such as cadmium is crucial for international trade. In the present study, visible and near infrared (VIS-NIR) spectroscopy, combined with linear and statistical methods, were used to predict the cadmium concentration of organic cocoa bean samples. Partial Least Square Regression (PLSR) and Support Vector Regression (SVR) were implemented to estimate the content of this heavy metal from hyperspectral imaging and chemical analysis. Competitive Adaptive Reweighted Sampling Method (CARS) and Jackknife method were used for selecting optimal wavelength. The SVR model performed satisfactorily with the use of 45 resulting wavelengths from optimization using CARS and the Jackknife method, with an adjusted coefficient for the test R2 of 0.9401 and an RMSEP of 0.2594. Based on the results, it was concluded that VIS-NIR spectroscopy combined with CARS-Jackknife methods seems to be a fast and effective alternative to classical methods for predicting the concentration of cadmium in organic cocoa beans. © 2019 IEEE.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2689
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/CHILECON47746.2019.8987991
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85081050194
url https://hdl.handle.net/20.500.12390/2689
https://doi.org/10.1109/CHILECON47746.2019.8987991
identifier_str_mv 2-s2.0-85081050194
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175567387131904
spelling Publicationrp07144600rp07145600rp07136600rp05418600rp07143600Checa K.Gamarra M.Soto J.Ipanaque W.Rosa G.L.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2689https://doi.org/10.1109/CHILECON47746.2019.89879912-s2.0-85081050194The contamination of soils by heavy metals is a current problem for agricultural production. Rapid access and reliability to heavy metal concentration such as cadmium is crucial for international trade. In the present study, visible and near infrared (VIS-NIR) spectroscopy, combined with linear and statistical methods, were used to predict the cadmium concentration of organic cocoa bean samples. Partial Least Square Regression (PLSR) and Support Vector Regression (SVR) were implemented to estimate the content of this heavy metal from hyperspectral imaging and chemical analysis. Competitive Adaptive Reweighted Sampling Method (CARS) and Jackknife method were used for selecting optimal wavelength. The SVR model performed satisfactorily with the use of 45 resulting wavelengths from optimization using CARS and the Jackknife method, with an adjusted coefficient for the test R2 of 0.9401 and an RMSEP of 0.2594. Based on the results, it was concluded that VIS-NIR spectroscopy combined with CARS-Jackknife methods seems to be a fast and effective alternative to classical methods for predicting the concentration of cadmium in organic cocoa beans. © 2019 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019info:eu-repo/semantics/openAccesspredicted error cadmiumCadmium-1cocoa bean-1control system-1data analysis-1data mining-1heavy metal-1hyperspectral image-1hyperspectral signature-1machine learning algorithms-1measured error cadmium-1http://purl.org/pe-repo/ocde/ford#4.01.01-1Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beansinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2689oai:repositorio.concytec.gob.pe:20.500.12390/26892024-05-30 16:10:31.553http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="63362730-3b51-424c-98c0-f0081975d9bd"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Preliminary study of the relation between the content of cadmium and the hyperspectral signature of organic cocoa beans</Title> <PublishedIn> <Publication> <Title>IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1109/CHILECON47746.2019.8987991</DOI> <SCP-Number>2-s2.0-85081050194</SCP-Number> <Authors> <Author> <DisplayName>Checa K.</DisplayName> <Person id="rp07144" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Gamarra M.</DisplayName> <Person id="rp07145" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Soto J.</DisplayName> <Person id="rp07136" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Ipanaque W.</DisplayName> <Person id="rp05418" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rosa G.L.</DisplayName> <Person id="rp07143" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>predicted error cadmium</Keyword> <Keyword>Cadmium</Keyword> <Keyword>cocoa bean</Keyword> <Keyword>control system</Keyword> <Keyword>data analysis</Keyword> <Keyword>data mining</Keyword> <Keyword>heavy metal</Keyword> <Keyword>hyperspectral image</Keyword> <Keyword>hyperspectral signature</Keyword> <Keyword>machine learning algorithms</Keyword> <Keyword>measured error cadmium</Keyword> <Abstract>The contamination of soils by heavy metals is a current problem for agricultural production. Rapid access and reliability to heavy metal concentration such as cadmium is crucial for international trade. In the present study, visible and near infrared (VIS-NIR) spectroscopy, combined with linear and statistical methods, were used to predict the cadmium concentration of organic cocoa bean samples. Partial Least Square Regression (PLSR) and Support Vector Regression (SVR) were implemented to estimate the content of this heavy metal from hyperspectral imaging and chemical analysis. Competitive Adaptive Reweighted Sampling Method (CARS) and Jackknife method were used for selecting optimal wavelength. The SVR model performed satisfactorily with the use of 45 resulting wavelengths from optimization using CARS and the Jackknife method, with an adjusted coefficient for the test R2 of 0.9401 and an RMSEP of 0.2594. Based on the results, it was concluded that VIS-NIR spectroscopy combined with CARS-Jackknife methods seems to be a fast and effective alternative to classical methods for predicting the concentration of cadmium in organic cocoa beans. © 2019 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.210282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).