Towards real-time automatic stress detection for office workplaces

Descripción del Articulo

Authors would like to thank to Dirk Heylen, head of HMI Lab of University of Twente, for facilitating us the HMI Lab to conduct the experiments and his early feedback. Also, We thank all the participants who took part in our research. This work has been supported by grant 234-2015-FONDECYT (Master P...

Descripción completa

Detalles Bibliográficos
Autores: Suni Lopez F., Condori-Fernandez N., Catala A.
Formato: objeto de conferencia
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/809
Enlace del recurso:https://hdl.handle.net/20.500.12390/809
https://doi.org/10.1007/978-3-030-11680-4_27
Nivel de acceso:acceso abierto
Materia:Workplace environments
Big data
Information management
Learning systems
Physiology
Electrodermal activity
Emotional trigger
Physiological data
Statistical approach
Stress detection
User satisfaction
Stresses
https://purl.org/pe-repo/ocde/ford#1.02.01
id CONC_ddb7a5b9f2e2ccc631e85ba5faf49b66
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/809
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Towards real-time automatic stress detection for office workplaces
title Towards real-time automatic stress detection for office workplaces
spellingShingle Towards real-time automatic stress detection for office workplaces
Suni Lopez F.
Workplace environments
Big data
Information management
Learning systems
Physiology
Electrodermal activity
Emotional trigger
Physiological data
Statistical approach
Stress detection
Stress detection
User satisfaction
User satisfaction
Stresses
Stresses
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Towards real-time automatic stress detection for office workplaces
title_full Towards real-time automatic stress detection for office workplaces
title_fullStr Towards real-time automatic stress detection for office workplaces
title_full_unstemmed Towards real-time automatic stress detection for office workplaces
title_sort Towards real-time automatic stress detection for office workplaces
author Suni Lopez F.
author_facet Suni Lopez F.
Condori-Fernandez N.
Catala A.
author_role author
author2 Condori-Fernandez N.
Catala A.
author2_role author
author
dc.contributor.author.fl_str_mv Suni Lopez F.
Condori-Fernandez N.
Catala A.
dc.subject.none.fl_str_mv Workplace environments
topic Workplace environments
Big data
Information management
Learning systems
Physiology
Electrodermal activity
Emotional trigger
Physiological data
Statistical approach
Stress detection
Stress detection
User satisfaction
User satisfaction
Stresses
Stresses
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.es_PE.fl_str_mv Big data
Information management
Learning systems
Physiology
Electrodermal activity
Emotional trigger
Physiological data
Statistical approach
Stress detection
Stress detection
User satisfaction
User satisfaction
Stresses
Stresses
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description Authors would like to thank to Dirk Heylen, head of HMI Lab of University of Twente, for facilitating us the HMI Lab to conduct the experiments and his early feedback. Also, We thank all the participants who took part in our research. This work has been supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU). Moreover, this work has received financial support from the Spanish Ministry of Economy, Industry and Competitiveness with the Project: TIN2016-78011-C4-1-R; Council of Culture, Education and University Planning with the project ED431G/08, the European Regional Development Fund (ERDF).
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.isbn.none.fl_str_mv 9783030116798
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/809
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-030-11680-4_27
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85063522016
identifier_str_mv 9783030116798
2-s2.0-85063522016
url https://hdl.handle.net/20.500.12390/809
https://doi.org/10.1007/978-3-030-11680-4_27
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Communications in Computer and Information Science
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175651326689280
spelling Publicationrp02078600rp02079600rp02080600Suni Lopez F.Condori-Fernandez N.Catala A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z20199783030116798https://hdl.handle.net/20.500.12390/809https://doi.org/10.1007/978-3-030-11680-4_272-s2.0-85063522016Authors would like to thank to Dirk Heylen, head of HMI Lab of University of Twente, for facilitating us the HMI Lab to conduct the experiments and his early feedback. Also, We thank all the participants who took part in our research. This work has been supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU). Moreover, this work has received financial support from the Spanish Ministry of Economy, Industry and Competitiveness with the Project: TIN2016-78011-C4-1-R; Council of Culture, Education and University Planning with the project ED431G/08, the European Regional Development Fund (ERDF).In recent years, several stress detection methods have been proposed, usually based on machine learning techniques relying on obstructive sensors, which could be uncomfortable or not suitable in many daily situations. Although studies on emotions are emerging and rising in Software Engineering (SE) research, stress has not been yet well investigated in the SE literature despite its negative impact on user satisfaction and stakeholder performance. In this paper, we investigate whether we can reliably implement a stress detector in a single pipeline suitable for real-time processing following an arousal-based statistical approach. It works with physiological data gathered by the E4-wristband, which registers electrodermal activity (EDA). We have conducted an experiment to analyze the output of our stress detector with regard to the self-reported stress in similar conditions to a quiet office workplace environment when users are exposed to different emotional triggers.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer VerlagCommunications in Computer and Information Scienceinfo:eu-repo/semantics/openAccessWorkplace environmentsBig data-1Information management-1Learning systems-1Physiology-1Electrodermal activity-1Emotional trigger-1Physiological data-1Statistical approach-1Stress detection-1Stress detection-1User satisfaction-1User satisfaction-1Stresses-1Stresses-1https://purl.org/pe-repo/ocde/ford#1.02.01-1Towards real-time automatic stress detection for office workplacesinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/809oai:repositorio.concytec.gob.pe:20.500.12390/8092024-05-30 15:36:09.529http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="91712966-9b20-4d94-a02e-e68719e8c740"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Towards real-time automatic stress detection for office workplaces</Title> <PublishedIn> <Publication> <Title>Communications in Computer and Information Science</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-11680-4_27</DOI> <SCP-Number>2-s2.0-85063522016</SCP-Number> <ISBN>9783030116798</ISBN> <Authors> <Author> <DisplayName>Suni Lopez F.</DisplayName> <Person id="rp02078" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Condori-Fernandez N.</DisplayName> <Person id="rp02079" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Catala A.</DisplayName> <Person id="rp02080" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Verlag</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Workplace environments</Keyword> <Keyword>Big data</Keyword> <Keyword>Information management</Keyword> <Keyword>Learning systems</Keyword> <Keyword>Physiology</Keyword> <Keyword>Electrodermal activity</Keyword> <Keyword>Emotional trigger</Keyword> <Keyword>Physiological data</Keyword> <Keyword>Statistical approach</Keyword> <Keyword>Stress detection</Keyword> <Keyword>Stress detection</Keyword> <Keyword>User satisfaction</Keyword> <Keyword>User satisfaction</Keyword> <Keyword>Stresses</Keyword> <Keyword>Stresses</Keyword> <Abstract>In recent years, several stress detection methods have been proposed, usually based on machine learning techniques relying on obstructive sensors, which could be uncomfortable or not suitable in many daily situations. Although studies on emotions are emerging and rising in Software Engineering (SE) research, stress has not been yet well investigated in the SE literature despite its negative impact on user satisfaction and stakeholder performance. In this paper, we investigate whether we can reliably implement a stress detector in a single pipeline suitable for real-time processing following an arousal-based statistical approach. It works with physiological data gathered by the E4-wristband, which registers electrodermal activity (EDA). We have conducted an experiment to analyze the output of our stress detector with regard to the self-reported stress in similar conditions to a quiet office workplace environment when users are exposed to different emotional triggers.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.439101
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).