A study of observation scales based on felzenswalb-huttenlocher dissimilarity measure for hierarchical segmentation

Descripción del Articulo

The research leading to these results has received funding from the French Agence Nationale de la Recherche, grant ANR-15-CE40-0006 (CoMeDiC), the Brazilian Federal Agency of Support and Evaluation of Postgraduate Education (program CAPES/PVE: grant 064965/2014-01), Brazilian Federal Agency of Resea...

Descripción completa

Detalles Bibliográficos
Autores: Cayllahua-Cahuina E., Cousty J., Guimarães S., Kenmochi Y., Cámara-Chávez G., de Albuquerque Araújo A.
Formato: objeto de conferencia
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/503
Enlace del recurso:https://hdl.handle.net/20.500.12390/503
https://doi.org/10.1007/978-3-030-14085-4_14
Nivel de acceso:acceso abierto
Materia:Segmentation results
Geometry
Graphic methods
Dissimilarity measures
Hierarchical graphs
Hierarchical segmentation
Scale selection
Scale spaces
Image segmentation
https://purl.org/pe-repo/ocde/ford#2.02.00
id CONC_daf361b4de9199e2e572dfd98ac8671c
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/503
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv A study of observation scales based on felzenswalb-huttenlocher dissimilarity measure for hierarchical segmentation
title A study of observation scales based on felzenswalb-huttenlocher dissimilarity measure for hierarchical segmentation
spellingShingle A study of observation scales based on felzenswalb-huttenlocher dissimilarity measure for hierarchical segmentation
Cayllahua-Cahuina E.
Segmentation results
Geometry
Graphic methods
Dissimilarity measures
Hierarchical graphs
Hierarchical segmentation
Scale selection
Scale spaces
Image segmentation
Image segmentation
https://purl.org/pe-repo/ocde/ford#2.02.00
title_short A study of observation scales based on felzenswalb-huttenlocher dissimilarity measure for hierarchical segmentation
title_full A study of observation scales based on felzenswalb-huttenlocher dissimilarity measure for hierarchical segmentation
title_fullStr A study of observation scales based on felzenswalb-huttenlocher dissimilarity measure for hierarchical segmentation
title_full_unstemmed A study of observation scales based on felzenswalb-huttenlocher dissimilarity measure for hierarchical segmentation
title_sort A study of observation scales based on felzenswalb-huttenlocher dissimilarity measure for hierarchical segmentation
author Cayllahua-Cahuina E.
author_facet Cayllahua-Cahuina E.
Cousty J.
Guimarães S.
Kenmochi Y.
Cámara-Chávez G.
de Albuquerque Araújo A.
author_role author
author2 Cousty J.
Guimarães S.
Kenmochi Y.
Cámara-Chávez G.
de Albuquerque Araújo A.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Cayllahua-Cahuina E.
Cousty J.
Guimarães S.
Kenmochi Y.
Cámara-Chávez G.
de Albuquerque Araújo A.
dc.subject.none.fl_str_mv Segmentation results
topic Segmentation results
Geometry
Graphic methods
Dissimilarity measures
Hierarchical graphs
Hierarchical segmentation
Scale selection
Scale spaces
Image segmentation
Image segmentation
https://purl.org/pe-repo/ocde/ford#2.02.00
dc.subject.es_PE.fl_str_mv Geometry
Graphic methods
Dissimilarity measures
Hierarchical graphs
Hierarchical segmentation
Scale selection
Scale spaces
Image segmentation
Image segmentation
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.00
description The research leading to these results has received funding from the French Agence Nationale de la Recherche, grant ANR-15-CE40-0006 (CoMeDiC), the Brazilian Federal Agency of Support and Evaluation of Postgraduate Education (program CAPES/PVE: grant 064965/2014-01), Brazilian Federal Agency of Research (CNPq/Universal 421521/2016-3 and CNPq/PQ 307062/2016-3), Fundo de Amparo Pesquisa do Estado de Minas Gerais (FAPEMIG/PPM 00006-16), the Peruvian agency Consejo Nacional de Ciencia, Tecnológica CONCYTEC (contract N 101-2016-. FONDECYT-DE). The first author would like to thank Brazilian agencies CNPq and CAPES and Peruvian agency CONCYTEC for the financial support during his thesis.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.isbn.none.fl_str_mv 9783030140847
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/503
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-030-14085-4_14
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85064214726
identifier_str_mv 9783030140847
2-s2.0-85064214726
url https://hdl.handle.net/20.500.12390/503
https://doi.org/10.1007/978-3-030-14085-4_14
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175547191558144
spelling Publicationrp00649600rp00651600rp00653600rp00654600rp00652600rp00650600Cayllahua-Cahuina E.Cousty J.Guimarães S.Kenmochi Y.Cámara-Chávez G.de Albuquerque Araújo A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z20199783030140847https://hdl.handle.net/20.500.12390/503https://doi.org/10.1007/978-3-030-14085-4_142-s2.0-85064214726The research leading to these results has received funding from the French Agence Nationale de la Recherche, grant ANR-15-CE40-0006 (CoMeDiC), the Brazilian Federal Agency of Support and Evaluation of Postgraduate Education (program CAPES/PVE: grant 064965/2014-01), Brazilian Federal Agency of Research (CNPq/Universal 421521/2016-3 and CNPq/PQ 307062/2016-3), Fundo de Amparo Pesquisa do Estado de Minas Gerais (FAPEMIG/PPM 00006-16), the Peruvian agency Consejo Nacional de Ciencia, Tecnológica CONCYTEC (contract N 101-2016-. FONDECYT-DE). The first author would like to thank Brazilian agencies CNPq and CAPES and Peruvian agency CONCYTEC for the financial support during his thesis.Hierarchical image segmentation provides a region-oriented scale-space, i.e., a set of image segmentations at different detail levels in which the segmentations at finer levels are nested with respect to those at coarser levels. Guimarães et al. proposed a hierarchical graph based image segmentation (HGB) method based on the Felzenszwalb-Huttenlocher dissimilarity. This HGB method computes, for each edge of a graph, the minimum scale in a hierarchy at which two regions linked by this edge should merge according to the dissimilarity. In order to generalize this method, we first propose an algorithm to compute the intervals which contain all the observation scales at which the associated regions should merge. Then, following the current trend in mathematical morphology to study criteria which are not increasing on a hierarchy, we present various strategies to select a significant observation scale in these intervals. We use the BSDS dataset to assess our observation scale selection methods. The experiments show that some of these strategies lead to better segmentation results than the ones obtained with the original HGB method.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer VerlagLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccessSegmentation resultsGeometry-1Graphic methods-1Dissimilarity measures-1Hierarchical graphs-1Hierarchical segmentation-1Scale selection-1Scale spaces-1Image segmentation-1Image segmentation-1https://purl.org/pe-repo/ocde/ford#2.02.00-1A study of observation scales based on felzenswalb-huttenlocher dissimilarity measure for hierarchical segmentationinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/503oai:repositorio.concytec.gob.pe:20.500.12390/5032024-05-30 15:22:01.071http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="579d9220-73de-4b23-a4e9-10e9cdf6ec4a"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A study of observation scales based on felzenswalb-huttenlocher dissimilarity measure for hierarchical segmentation</Title> <PublishedIn> <Publication> <Title>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-14085-4_14</DOI> <SCP-Number>2-s2.0-85064214726</SCP-Number> <ISBN>9783030140847</ISBN> <Authors> <Author> <DisplayName>Cayllahua-Cahuina E.</DisplayName> <Person id="rp00649" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cousty J.</DisplayName> <Person id="rp00651" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Guimarães S.</DisplayName> <Person id="rp00653" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Kenmochi Y.</DisplayName> <Person id="rp00654" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cámara-Chávez G.</DisplayName> <Person id="rp00652" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>de Albuquerque Araújo A.</DisplayName> <Person id="rp00650" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Verlag</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Segmentation results</Keyword> <Keyword>Geometry</Keyword> <Keyword>Graphic methods</Keyword> <Keyword>Dissimilarity measures</Keyword> <Keyword>Hierarchical graphs</Keyword> <Keyword>Hierarchical segmentation</Keyword> <Keyword>Scale selection</Keyword> <Keyword>Scale spaces</Keyword> <Keyword>Image segmentation</Keyword> <Keyword>Image segmentation</Keyword> <Abstract>Hierarchical image segmentation provides a region-oriented scale-space, i.e., a set of image segmentations at different detail levels in which the segmentations at finer levels are nested with respect to those at coarser levels. Guimarães et al. proposed a hierarchical graph based image segmentation (HGB) method based on the Felzenszwalb-Huttenlocher dissimilarity. This HGB method computes, for each edge of a graph, the minimum scale in a hierarchy at which two regions linked by this edge should merge according to the dissimilarity. In order to generalize this method, we first propose an algorithm to compute the intervals which contain all the observation scales at which the associated regions should merge. Then, following the current trend in mathematical morphology to study criteria which are not increasing on a hierarchy, we present various strategies to select a significant observation scale in these intervals. We use the BSDS dataset to assess our observation scale selection methods. The experiments show that some of these strategies lead to better segmentation results than the ones obtained with the original HGB method.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.436549
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).