Compact and unified elasto-plastic formulation to study isotropic plates

Descripción del Articulo

We introduce a compact and unified shear deformation theory for plates with elasto-plastic behavior. We formulate the kinematics of the two-dimensional structure in a compact and unified manner using the Carrera Unified Formulation. This formulation allows for generalized expansions of the primary v...

Descripción completa

Detalles Bibliográficos
Autores: Mantari J.L., Canales F.G.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2622
Enlace del recurso:https://hdl.handle.net/20.500.12390/2622
https://doi.org/10.1016/j.ijnonlinmec.2019.103253
Nivel de acceso:acceso abierto
Materia:Plasticity
Elasto-plastic
Finite element method
Higher-order plate theories
http://purl.org/pe-repo/ocde/ford#1.01.02
id CONC_da5bdc29fcf3533a1d946a3d54458fc8
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2622
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Compact and unified elasto-plastic formulation to study isotropic plates
title Compact and unified elasto-plastic formulation to study isotropic plates
spellingShingle Compact and unified elasto-plastic formulation to study isotropic plates
Mantari J.L.
Plasticity
Elasto-plastic
Finite element method
Higher-order plate theories
http://purl.org/pe-repo/ocde/ford#1.01.02
title_short Compact and unified elasto-plastic formulation to study isotropic plates
title_full Compact and unified elasto-plastic formulation to study isotropic plates
title_fullStr Compact and unified elasto-plastic formulation to study isotropic plates
title_full_unstemmed Compact and unified elasto-plastic formulation to study isotropic plates
title_sort Compact and unified elasto-plastic formulation to study isotropic plates
author Mantari J.L.
author_facet Mantari J.L.
Canales F.G.
author_role author
author2 Canales F.G.
author2_role author
dc.contributor.author.fl_str_mv Mantari J.L.
Canales F.G.
dc.subject.none.fl_str_mv Plasticity
topic Plasticity
Elasto-plastic
Finite element method
Higher-order plate theories
http://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.es_PE.fl_str_mv Elasto-plastic
Finite element method
Higher-order plate theories
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.02
description We introduce a compact and unified shear deformation theory for plates with elasto-plastic behavior. We formulate the kinematics of the two-dimensional structure in a compact and unified manner using the Carrera Unified Formulation. This formulation allows for generalized expansions of the primary variables and through-the-thickness functions. We obtain the governing equations using the principle of virtual work and a finite element discretization. We solve the nonlinear equations using a Newton–Raphson linearization scheme, and linearize the constitutive equations using the algorithmic tangent moduli. We consider the J2 flow theory of plasticity, and use a backwards Euler scheme to update the stresses. We analyze the convergence, and compare the effectiveness of the Mixed Interpolation of Tensorial Components technique in contrasting the shear locking phenomenon in the nonlinear regime to the use of full and uniform reduced integration. We also conduct numerical assessments for plates under uniform and line loads. We compare the present results to those obtained by finite element commercial software, and demonstrate the computational efficiency of the present method. © 2019
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2622
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.ijnonlinmec.2019.103253
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85072293105
url https://hdl.handle.net/20.500.12390/2622
https://doi.org/10.1016/j.ijnonlinmec.2019.103253
identifier_str_mv 2-s2.0-85072293105
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv International Journal of Non-Linear Mechanics
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175726983544832
spelling Publicationrp01200600rp06742600Mantari J.L.Canales F.G.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2622https://doi.org/10.1016/j.ijnonlinmec.2019.1032532-s2.0-85072293105We introduce a compact and unified shear deformation theory for plates with elasto-plastic behavior. We formulate the kinematics of the two-dimensional structure in a compact and unified manner using the Carrera Unified Formulation. This formulation allows for generalized expansions of the primary variables and through-the-thickness functions. We obtain the governing equations using the principle of virtual work and a finite element discretization. We solve the nonlinear equations using a Newton–Raphson linearization scheme, and linearize the constitutive equations using the algorithmic tangent moduli. We consider the J2 flow theory of plasticity, and use a backwards Euler scheme to update the stresses. We analyze the convergence, and compare the effectiveness of the Mixed Interpolation of Tensorial Components technique in contrasting the shear locking phenomenon in the nonlinear regime to the use of full and uniform reduced integration. We also conduct numerical assessments for plates under uniform and line loads. We compare the present results to those obtained by finite element commercial software, and demonstrate the computational efficiency of the present method. © 2019Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier LtdInternational Journal of Non-Linear Mechanicsinfo:eu-repo/semantics/openAccessPlasticityElasto-plastic-1Finite element method-1Higher-order plate theories-1http://purl.org/pe-repo/ocde/ford#1.01.02-1Compact and unified elasto-plastic formulation to study isotropic platesinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2622oai:repositorio.concytec.gob.pe:20.500.12390/26222024-05-30 16:09:57.452http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="bc7c7837-3758-4d88-b3be-85fc2cf481b7"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Compact and unified elasto-plastic formulation to study isotropic plates</Title> <PublishedIn> <Publication> <Title>International Journal of Non-Linear Mechanics</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1016/j.ijnonlinmec.2019.103253</DOI> <SCP-Number>2-s2.0-85072293105</SCP-Number> <Authors> <Author> <DisplayName>Mantari J.L.</DisplayName> <Person id="rp01200" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Canales F.G.</DisplayName> <Person id="rp06742" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Plasticity</Keyword> <Keyword>Elasto-plastic</Keyword> <Keyword>Finite element method</Keyword> <Keyword>Higher-order plate theories</Keyword> <Abstract>We introduce a compact and unified shear deformation theory for plates with elasto-plastic behavior. We formulate the kinematics of the two-dimensional structure in a compact and unified manner using the Carrera Unified Formulation. This formulation allows for generalized expansions of the primary variables and through-the-thickness functions. We obtain the governing equations using the principle of virtual work and a finite element discretization. We solve the nonlinear equations using a Newton–Raphson linearization scheme, and linearize the constitutive equations using the algorithmic tangent moduli. We consider the J2 flow theory of plasticity, and use a backwards Euler scheme to update the stresses. We analyze the convergence, and compare the effectiveness of the Mixed Interpolation of Tensorial Components technique in contrasting the shear locking phenomenon in the nonlinear regime to the use of full and uniform reduced integration. We also conduct numerical assessments for plates under uniform and line loads. We compare the present results to those obtained by finite element commercial software, and demonstrate the computational efficiency of the present method. © 2019</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).