A Novel EEG-Based Four-Class Linguistic BCI
Descripción del Articulo
In this work, we present a novel EEG-based Linguistic BCI, which uses the four phonemic structures "BA", "FO", "LE", and "RY" as covert speech task classes. Six neurologically healthy volunteers with the age range of 19-37 participated in this experiment. Part...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2831 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2831 https://doi.org/10.1109/EMBC.2019.8856644 |
Nivel de acceso: | acceso abierto |
Materia: | Training Task analysis Electroencephalography Time-frequency analysis Phonetics Protocols https://purl.org/pe-repo/ocde/ford#2.02.01 |
id |
CONC_d95d59afd45fec819aec5990d45b3b32 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2831 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
A Novel EEG-Based Four-Class Linguistic BCI |
title |
A Novel EEG-Based Four-Class Linguistic BCI |
spellingShingle |
A Novel EEG-Based Four-Class Linguistic BCI Jahangiri, Amir Training Task analysis Electroencephalography Time-frequency analysis Phonetics Protocols https://purl.org/pe-repo/ocde/ford#2.02.01 |
title_short |
A Novel EEG-Based Four-Class Linguistic BCI |
title_full |
A Novel EEG-Based Four-Class Linguistic BCI |
title_fullStr |
A Novel EEG-Based Four-Class Linguistic BCI |
title_full_unstemmed |
A Novel EEG-Based Four-Class Linguistic BCI |
title_sort |
A Novel EEG-Based Four-Class Linguistic BCI |
author |
Jahangiri, Amir |
author_facet |
Jahangiri, Amir Achanccaray, David Sepulveda, Francisco |
author_role |
author |
author2 |
Achanccaray, David Sepulveda, Francisco |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Jahangiri, Amir Achanccaray, David Sepulveda, Francisco |
dc.subject.none.fl_str_mv |
Training |
topic |
Training Task analysis Electroencephalography Time-frequency analysis Phonetics Protocols https://purl.org/pe-repo/ocde/ford#2.02.01 |
dc.subject.es_PE.fl_str_mv |
Task analysis Electroencephalography Time-frequency analysis Phonetics Protocols |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.01 |
description |
In this work, we present a novel EEG-based Linguistic BCI, which uses the four phonemic structures "BA", "FO", "LE", and "RY" as covert speech task classes. Six neurologically healthy volunteers with the age range of 19-37 participated in this experiment. Participants were asked to covertly speak a phonemic structure when they heard an auditory cue. EEG was recorded with 64 electrodes at 2048 samples/s. The duration of each trial is 312ms starting with the cue. The BCI was trained using a mixed randomized recording run containing 15 trials per class. The BCI is tested by playing a simple game of "Wack a mole" containing 5 trials per class presented in random order. The average classification accuracy for the 6 users is 82.5%. The most valuable features emerge after Auditory cue recognition (~100ms post onset), and within the 70-128 Hz frequency range. The most significant identified brain regions were the Prefrontal Cortex (linked to stimulus driven executive control), Wernicke's area (linked to Phonological code retrieval), the right IFG, and Broca's area (linked to syllabification). In this work, we have only scratched the surface of using Linguistic tasks for BCIs and the potential for creating much more capable systems in the future using this approach exists. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2831 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/EMBC.2019.8856644 |
url |
https://hdl.handle.net/20.500.12390/2831 https://doi.org/10.1109/EMBC.2019.8856644 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175503005614080 |
spelling |
Publicationrp07691600rp03820600rp07692600Jahangiri, AmirAchanccaray, DavidSepulveda, Francisco2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2831https://doi.org/10.1109/EMBC.2019.8856644In this work, we present a novel EEG-based Linguistic BCI, which uses the four phonemic structures "BA", "FO", "LE", and "RY" as covert speech task classes. Six neurologically healthy volunteers with the age range of 19-37 participated in this experiment. Participants were asked to covertly speak a phonemic structure when they heard an auditory cue. EEG was recorded with 64 electrodes at 2048 samples/s. The duration of each trial is 312ms starting with the cue. The BCI was trained using a mixed randomized recording run containing 15 trials per class. The BCI is tested by playing a simple game of "Wack a mole" containing 5 trials per class presented in random order. The average classification accuracy for the 6 users is 82.5%. The most valuable features emerge after Auditory cue recognition (~100ms post onset), and within the 70-128 Hz frequency range. The most significant identified brain regions were the Prefrontal Cortex (linked to stimulus driven executive control), Wernicke's area (linked to Phonological code retrieval), the right IFG, and Broca's area (linked to syllabification). In this work, we have only scratched the surface of using Linguistic tasks for BCIs and the potential for creating much more capable systems in the future using this approach exists.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengIEEE2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)info:eu-repo/semantics/openAccessTrainingTask analysis-1Electroencephalography-1Time-frequency analysis-1Phonetics-1Protocols-1https://purl.org/pe-repo/ocde/ford#2.02.01-1A Novel EEG-Based Four-Class Linguistic BCIinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2831oai:repositorio.concytec.gob.pe:20.500.12390/28312024-05-30 15:25:39.265http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="39780a43-c9e5-41b2-b5a9-fd06c37ee6e6"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>A Novel EEG-Based Four-Class Linguistic BCI</Title> <PublishedIn> <Publication> <Title>2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1109/EMBC.2019.8856644</DOI> <Authors> <Author> <DisplayName>Jahangiri, Amir</DisplayName> <Person id="rp07691" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Achanccaray, David</DisplayName> <Person id="rp03820" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Sepulveda, Francisco</DisplayName> <Person id="rp07692" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>IEEE</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Training</Keyword> <Keyword>Task analysis</Keyword> <Keyword>Electroencephalography</Keyword> <Keyword>Time-frequency analysis</Keyword> <Keyword>Phonetics</Keyword> <Keyword>Protocols</Keyword> <Abstract>In this work, we present a novel EEG-based Linguistic BCI, which uses the four phonemic structures "BA", "FO", "LE", and "RY" as covert speech task classes. Six neurologically healthy volunteers with the age range of 19-37 participated in this experiment. Participants were asked to covertly speak a phonemic structure when they heard an auditory cue. EEG was recorded with 64 electrodes at 2048 samples/s. The duration of each trial is 312ms starting with the cue. The BCI was trained using a mixed randomized recording run containing 15 trials per class. The BCI is tested by playing a simple game of "Wack a mole" containing 5 trials per class presented in random order. The average classification accuracy for the 6 users is 82.5%. The most valuable features emerge after Auditory cue recognition (~100ms post onset), and within the 70-128 Hz frequency range. The most significant identified brain regions were the Prefrontal Cortex (linked to stimulus driven executive control), Wernicke's area (linked to Phonological code retrieval), the right IFG, and Broca's area (linked to syllabification). In this work, we have only scratched the surface of using Linguistic tasks for BCIs and the potential for creating much more capable systems in the future using this approach exists.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.439101 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).