Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach

Descripción del Articulo

During the last decade, there was a substantial increase in the research on metal-doped oxide semiconductor nanoparticles due to advances in the engineering of nanomaterials and their potential application in spintronics, biomedicine and photocatalysis fields. In this regard, doping a nanomaterial i...

Descripción completa

Detalles Bibliográficos
Autores: Aragón F.F.H., Villegas-Lelovsky L., Cabral L., Lima M.P., Mesquita A., Coaquira J.A.H.
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2371
Enlace del recurso:https://hdl.handle.net/20.500.12390/2371
https://doi.org/10.1039/d0na00700e
Nivel de acceso:acceso abierto
Materia:Titanium dioxide
Magnetic properties
Magnetism
Metal nanoparticles
Nanostructured materials
OxidationOxide minerals
Oxide semiconductors
Oxygen vacancies
Physicochemical properties
Point defects
Semiconductor doping
http://purl.org/pe-repo/ocde/ford#1.01.02
id CONC_d70aa19bf342777f0bc9fe88a8b9f1da
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2371
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach
title Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach
spellingShingle Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach
Aragón F.F.H.
Titanium dioxide
Magnetic properties
Magnetism
Metal nanoparticles
Nanostructured materials
OxidationOxide minerals
Oxide semiconductors
Oxygen vacancies
Physicochemical properties
Point defects
Semiconductor doping
http://purl.org/pe-repo/ocde/ford#1.01.02
title_short Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach
title_full Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach
title_fullStr Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach
title_full_unstemmed Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach
title_sort Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach
author Aragón F.F.H.
author_facet Aragón F.F.H.
Villegas-Lelovsky L.
Cabral L.
Lima M.P.
Mesquita A.
Coaquira J.A.H.
author_role author
author2 Villegas-Lelovsky L.
Cabral L.
Lima M.P.
Mesquita A.
Coaquira J.A.H.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Aragón F.F.H.
Villegas-Lelovsky L.
Cabral L.
Lima M.P.
Mesquita A.
Coaquira J.A.H.
dc.subject.none.fl_str_mv Titanium dioxide
topic Titanium dioxide
Magnetic properties
Magnetism
Metal nanoparticles
Nanostructured materials
OxidationOxide minerals
Oxide semiconductors
Oxygen vacancies
Physicochemical properties
Point defects
Semiconductor doping
http://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.es_PE.fl_str_mv Magnetic properties
Magnetism
Metal nanoparticles
Nanostructured materials
OxidationOxide minerals
Oxide semiconductors
Oxygen vacancies
Physicochemical properties
Point defects
Semiconductor doping
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.02
description During the last decade, there was a substantial increase in the research on metal-doped oxide semiconductor nanoparticles due to advances in the engineering of nanomaterials and their potential application in spintronics, biomedicine and photocatalysis fields. In this regard, doping a nanomaterial is a powerful tool to tune its physicochemical properties. The aim of this work is to shine a new light on the role of the neighbouring elements on the oxidation state of the Ce-impurity, from both experimental and theoretical points of view. Herein, we present an accurate study of the mechanisms involved in the oxidation states of the Ce-ions during the doping process of SnO2nanoparticles (NPs) prepared by the polymeric precursor method. X-ray diffraction measurements have displayed the tetragonal rutile-type SnO2phase in all samples. However, the Bragg’s peak (111) and (220) located at 2??29° and ?47° evidence the formation of a secondary CeO2phase for samples with Ce content up to 10%. X-ray absorption near-edge structure (XANES) measurements, at Ce L3 edge, were performed on the NPs as a function of Ce content. The results show, on one side, the coexistence of Ce3+and Ce4+states in all samples; and on the other side, a clear reduction in the Ce3+population driven by the increase of Ce content. It is shown that this is induced by the neighboring cation, and confirmed by magnetic measurements. The monotonic damping of the Ce3+/Ce4+ratio experimentally, was connected with theoretical calculationsviadensity functional theory by simulating a variety of point defects composed of Ce impurities and surrounding oxygen vacancies. We found that the number of oxygen vacancies around the Ce-ions is the main ingredient to change the Ce oxidation state, and hence the magnetic properties of Ce-doped SnO2NPs. The presented results pave the way for handling the magnetic properties of oxides through the control of the oxidation state of impurities. © The Royal Society of Chemistry 2021.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2371
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1039/d0na00700e
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85102279091
url https://hdl.handle.net/20.500.12390/2371
https://doi.org/10.1039/d0na00700e
identifier_str_mv 2-s2.0-85102279091
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Nanoscale Advances
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
bitstream.url.fl_str_mv https://repositorio.concytec.gob.pe/bitstreams/999bc97e-b4c9-487a-b360-efa56fa4398d/download
https://repositorio.concytec.gob.pe/bitstreams/441607d7-feae-4f49-b1ca-729a7c7f849a/download
https://repositorio.concytec.gob.pe/bitstreams/908f1148-688b-4ac4-b20d-97f0ba15bb42/download
bitstream.checksum.fl_str_mv 7665af3d498d85af6fc64a3cd5cd52d0
fb8abf9e77ace6ca2c358accedec58e5
65499d3d9b168d134337cee28da3a6f0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175433629728768
spelling Publicationrp05532600rp05736600rp05738600rp05735600rp05737600rp05529600Aragón F.F.H.Villegas-Lelovsky L.Cabral L.Lima M.P.Mesquita A.Coaquira J.A.H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2371https://doi.org/10.1039/d0na00700e2-s2.0-85102279091During the last decade, there was a substantial increase in the research on metal-doped oxide semiconductor nanoparticles due to advances in the engineering of nanomaterials and their potential application in spintronics, biomedicine and photocatalysis fields. In this regard, doping a nanomaterial is a powerful tool to tune its physicochemical properties. The aim of this work is to shine a new light on the role of the neighbouring elements on the oxidation state of the Ce-impurity, from both experimental and theoretical points of view. Herein, we present an accurate study of the mechanisms involved in the oxidation states of the Ce-ions during the doping process of SnO2nanoparticles (NPs) prepared by the polymeric precursor method. X-ray diffraction measurements have displayed the tetragonal rutile-type SnO2phase in all samples. However, the Bragg’s peak (111) and (220) located at 2??29° and ?47° evidence the formation of a secondary CeO2phase for samples with Ce content up to 10%. X-ray absorption near-edge structure (XANES) measurements, at Ce L3 edge, were performed on the NPs as a function of Ce content. The results show, on one side, the coexistence of Ce3+and Ce4+states in all samples; and on the other side, a clear reduction in the Ce3+population driven by the increase of Ce content. It is shown that this is induced by the neighboring cation, and confirmed by magnetic measurements. The monotonic damping of the Ce3+/Ce4+ratio experimentally, was connected with theoretical calculationsviadensity functional theory by simulating a variety of point defects composed of Ce impurities and surrounding oxygen vacancies. We found that the number of oxygen vacancies around the Ce-ions is the main ingredient to change the Ce oxidation state, and hence the magnetic properties of Ce-doped SnO2NPs. The presented results pave the way for handling the magnetic properties of oxides through the control of the oxidation state of impurities. © The Royal Society of Chemistry 2021.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengRoyal Society of ChemistryNanoscale Advancesinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Titanium dioxideMagnetic properties-1Magnetism-1Metal nanoparticles-1Nanostructured materials-1OxidationOxide minerals-1Oxide semiconductors-1Oxygen vacancies-1Physicochemical properties-1Point defects-1Semiconductor doping-1http://purl.org/pe-repo/ocde/ford#1.01.02-1Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approachinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTECORIGINALTuning the magnetic - Nanoscale Advances.pdfTuning the magnetic - Nanoscale Advances.pdfapplication/pdf2976511https://repositorio.concytec.gob.pe/bitstreams/999bc97e-b4c9-487a-b360-efa56fa4398d/download7665af3d498d85af6fc64a3cd5cd52d0MD51TEXTTuning the magnetic - Nanoscale Advances.pdf.txtTuning the magnetic - Nanoscale Advances.pdf.txtExtracted texttext/plain53608https://repositorio.concytec.gob.pe/bitstreams/441607d7-feae-4f49-b1ca-729a7c7f849a/downloadfb8abf9e77ace6ca2c358accedec58e5MD52THUMBNAILTuning the magnetic - Nanoscale Advances.pdf.jpgTuning the magnetic - Nanoscale Advances.pdf.jpgGenerated Thumbnailimage/jpeg6259https://repositorio.concytec.gob.pe/bitstreams/908f1148-688b-4ac4-b20d-97f0ba15bb42/download65499d3d9b168d134337cee28da3a6f0MD5320.500.12390/2371oai:repositorio.concytec.gob.pe:20.500.12390/23712025-01-19 22:00:19.06https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="16cc72aa-ed90-4215-8680-c8113f9abf0f"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach</Title> <PublishedIn> <Publication> <Title>Nanoscale Advances</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1039/d0na00700e</DOI> <SCP-Number>2-s2.0-85102279091</SCP-Number> <Authors> <Author> <DisplayName>Aragón F.F.H.</DisplayName> <Person id="rp05532" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villegas-Lelovsky L.</DisplayName> <Person id="rp05736" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cabral L.</DisplayName> <Person id="rp05738" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lima M.P.</DisplayName> <Person id="rp05735" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mesquita A.</DisplayName> <Person id="rp05737" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Coaquira J.A.H.</DisplayName> <Person id="rp05529" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Royal Society of Chemistry</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc/4.0/</License> <Keyword>Titanium dioxide</Keyword> <Keyword>Magnetic properties</Keyword> <Keyword>Magnetism</Keyword> <Keyword>Metal nanoparticles</Keyword> <Keyword>Nanostructured materials</Keyword> <Keyword>OxidationOxide minerals</Keyword> <Keyword>Oxide semiconductors</Keyword> <Keyword>Oxygen vacancies</Keyword> <Keyword>Physicochemical properties</Keyword> <Keyword>Point defects</Keyword> <Keyword>Semiconductor doping</Keyword> <Abstract>During the last decade, there was a substantial increase in the research on metal-doped oxide semiconductor nanoparticles due to advances in the engineering of nanomaterials and their potential application in spintronics, biomedicine and photocatalysis fields. In this regard, doping a nanomaterial is a powerful tool to tune its physicochemical properties. The aim of this work is to shine a new light on the role of the neighbouring elements on the oxidation state of the Ce-impurity, from both experimental and theoretical points of view. Herein, we present an accurate study of the mechanisms involved in the oxidation states of the Ce-ions during the doping process of SnO2nanoparticles (NPs) prepared by the polymeric precursor method. X-ray diffraction measurements have displayed the tetragonal rutile-type SnO2phase in all samples. However, the Bragg’s peak (111) and (220) located at 2??29° and ?47° evidence the formation of a secondary CeO2phase for samples with Ce content up to 10%. X-ray absorption near-edge structure (XANES) measurements, at Ce L3 edge, were performed on the NPs as a function of Ce content. The results show, on one side, the coexistence of Ce3+and Ce4+states in all samples; and on the other side, a clear reduction in the Ce3+population driven by the increase of Ce content. It is shown that this is induced by the neighboring cation, and confirmed by magnetic measurements. The monotonic damping of the Ce3+/Ce4+ratio experimentally, was connected with theoretical calculationsviadensity functional theory by simulating a variety of point defects composed of Ce impurities and surrounding oxygen vacancies. We found that the number of oxygen vacancies around the Ce-ions is the main ingredient to change the Ce oxidation state, and hence the magnetic properties of Ce-doped SnO2NPs. The presented results pave the way for handling the magnetic properties of oxides through the control of the oxidation state of impurities. © The Royal Society of Chemistry 2021.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.243791
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).