Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach
Descripción del Articulo
During the last decade, there was a substantial increase in the research on metal-doped oxide semiconductor nanoparticles due to advances in the engineering of nanomaterials and their potential application in spintronics, biomedicine and photocatalysis fields. In this regard, doping a nanomaterial i...
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2371 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2371 https://doi.org/10.1039/d0na00700e |
Nivel de acceso: | acceso abierto |
Materia: | Titanium dioxide Magnetic properties Magnetism Metal nanoparticles Nanostructured materials OxidationOxide minerals Oxide semiconductors Oxygen vacancies Physicochemical properties Point defects Semiconductor doping http://purl.org/pe-repo/ocde/ford#1.01.02 |
id |
CONC_d70aa19bf342777f0bc9fe88a8b9f1da |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2371 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach |
title |
Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach |
spellingShingle |
Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach Aragón F.F.H. Titanium dioxide Magnetic properties Magnetism Metal nanoparticles Nanostructured materials OxidationOxide minerals Oxide semiconductors Oxygen vacancies Physicochemical properties Point defects Semiconductor doping http://purl.org/pe-repo/ocde/ford#1.01.02 |
title_short |
Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach |
title_full |
Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach |
title_fullStr |
Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach |
title_full_unstemmed |
Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach |
title_sort |
Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach |
author |
Aragón F.F.H. |
author_facet |
Aragón F.F.H. Villegas-Lelovsky L. Cabral L. Lima M.P. Mesquita A. Coaquira J.A.H. |
author_role |
author |
author2 |
Villegas-Lelovsky L. Cabral L. Lima M.P. Mesquita A. Coaquira J.A.H. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Aragón F.F.H. Villegas-Lelovsky L. Cabral L. Lima M.P. Mesquita A. Coaquira J.A.H. |
dc.subject.none.fl_str_mv |
Titanium dioxide |
topic |
Titanium dioxide Magnetic properties Magnetism Metal nanoparticles Nanostructured materials OxidationOxide minerals Oxide semiconductors Oxygen vacancies Physicochemical properties Point defects Semiconductor doping http://purl.org/pe-repo/ocde/ford#1.01.02 |
dc.subject.es_PE.fl_str_mv |
Magnetic properties Magnetism Metal nanoparticles Nanostructured materials OxidationOxide minerals Oxide semiconductors Oxygen vacancies Physicochemical properties Point defects Semiconductor doping |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.02 |
description |
During the last decade, there was a substantial increase in the research on metal-doped oxide semiconductor nanoparticles due to advances in the engineering of nanomaterials and their potential application in spintronics, biomedicine and photocatalysis fields. In this regard, doping a nanomaterial is a powerful tool to tune its physicochemical properties. The aim of this work is to shine a new light on the role of the neighbouring elements on the oxidation state of the Ce-impurity, from both experimental and theoretical points of view. Herein, we present an accurate study of the mechanisms involved in the oxidation states of the Ce-ions during the doping process of SnO2nanoparticles (NPs) prepared by the polymeric precursor method. X-ray diffraction measurements have displayed the tetragonal rutile-type SnO2phase in all samples. However, the Bragg’s peak (111) and (220) located at 2??29° and ?47° evidence the formation of a secondary CeO2phase for samples with Ce content up to 10%. X-ray absorption near-edge structure (XANES) measurements, at Ce L3 edge, were performed on the NPs as a function of Ce content. The results show, on one side, the coexistence of Ce3+and Ce4+states in all samples; and on the other side, a clear reduction in the Ce3+population driven by the increase of Ce content. It is shown that this is induced by the neighboring cation, and confirmed by magnetic measurements. The monotonic damping of the Ce3+/Ce4+ratio experimentally, was connected with theoretical calculationsviadensity functional theory by simulating a variety of point defects composed of Ce impurities and surrounding oxygen vacancies. We found that the number of oxygen vacancies around the Ce-ions is the main ingredient to change the Ce oxidation state, and hence the magnetic properties of Ce-doped SnO2NPs. The presented results pave the way for handling the magnetic properties of oxides through the control of the oxidation state of impurities. © The Royal Society of Chemistry 2021. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2371 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1039/d0na00700e |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85102279091 |
url |
https://hdl.handle.net/20.500.12390/2371 https://doi.org/10.1039/d0na00700e |
identifier_str_mv |
2-s2.0-85102279091 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Nanoscale Advances |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.concytec.gob.pe/bitstreams/999bc97e-b4c9-487a-b360-efa56fa4398d/download https://repositorio.concytec.gob.pe/bitstreams/441607d7-feae-4f49-b1ca-729a7c7f849a/download https://repositorio.concytec.gob.pe/bitstreams/908f1148-688b-4ac4-b20d-97f0ba15bb42/download |
bitstream.checksum.fl_str_mv |
7665af3d498d85af6fc64a3cd5cd52d0 fb8abf9e77ace6ca2c358accedec58e5 65499d3d9b168d134337cee28da3a6f0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175433629728768 |
spelling |
Publicationrp05532600rp05736600rp05738600rp05735600rp05737600rp05529600Aragón F.F.H.Villegas-Lelovsky L.Cabral L.Lima M.P.Mesquita A.Coaquira J.A.H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/2371https://doi.org/10.1039/d0na00700e2-s2.0-85102279091During the last decade, there was a substantial increase in the research on metal-doped oxide semiconductor nanoparticles due to advances in the engineering of nanomaterials and their potential application in spintronics, biomedicine and photocatalysis fields. In this regard, doping a nanomaterial is a powerful tool to tune its physicochemical properties. The aim of this work is to shine a new light on the role of the neighbouring elements on the oxidation state of the Ce-impurity, from both experimental and theoretical points of view. Herein, we present an accurate study of the mechanisms involved in the oxidation states of the Ce-ions during the doping process of SnO2nanoparticles (NPs) prepared by the polymeric precursor method. X-ray diffraction measurements have displayed the tetragonal rutile-type SnO2phase in all samples. However, the Bragg’s peak (111) and (220) located at 2??29° and ?47° evidence the formation of a secondary CeO2phase for samples with Ce content up to 10%. X-ray absorption near-edge structure (XANES) measurements, at Ce L3 edge, were performed on the NPs as a function of Ce content. The results show, on one side, the coexistence of Ce3+and Ce4+states in all samples; and on the other side, a clear reduction in the Ce3+population driven by the increase of Ce content. It is shown that this is induced by the neighboring cation, and confirmed by magnetic measurements. The monotonic damping of the Ce3+/Ce4+ratio experimentally, was connected with theoretical calculationsviadensity functional theory by simulating a variety of point defects composed of Ce impurities and surrounding oxygen vacancies. We found that the number of oxygen vacancies around the Ce-ions is the main ingredient to change the Ce oxidation state, and hence the magnetic properties of Ce-doped SnO2NPs. The presented results pave the way for handling the magnetic properties of oxides through the control of the oxidation state of impurities. © The Royal Society of Chemistry 2021.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengRoyal Society of ChemistryNanoscale Advancesinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Titanium dioxideMagnetic properties-1Magnetism-1Metal nanoparticles-1Nanostructured materials-1OxidationOxide minerals-1Oxide semiconductors-1Oxygen vacancies-1Physicochemical properties-1Point defects-1Semiconductor doping-1http://purl.org/pe-repo/ocde/ford#1.01.02-1Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approachinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTECORIGINALTuning the magnetic - Nanoscale Advances.pdfTuning the magnetic - Nanoscale Advances.pdfapplication/pdf2976511https://repositorio.concytec.gob.pe/bitstreams/999bc97e-b4c9-487a-b360-efa56fa4398d/download7665af3d498d85af6fc64a3cd5cd52d0MD51TEXTTuning the magnetic - Nanoscale Advances.pdf.txtTuning the magnetic - Nanoscale Advances.pdf.txtExtracted texttext/plain53608https://repositorio.concytec.gob.pe/bitstreams/441607d7-feae-4f49-b1ca-729a7c7f849a/downloadfb8abf9e77ace6ca2c358accedec58e5MD52THUMBNAILTuning the magnetic - Nanoscale Advances.pdf.jpgTuning the magnetic - Nanoscale Advances.pdf.jpgGenerated Thumbnailimage/jpeg6259https://repositorio.concytec.gob.pe/bitstreams/908f1148-688b-4ac4-b20d-97f0ba15bb42/download65499d3d9b168d134337cee28da3a6f0MD5320.500.12390/2371oai:repositorio.concytec.gob.pe:20.500.12390/23712025-01-19 22:00:19.06https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="16cc72aa-ed90-4215-8680-c8113f9abf0f"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Tuning the magnetic properties of Sn1?x?yCe4+xCe3+yO2nanoparticles: an experimental and theoretical approach</Title> <PublishedIn> <Publication> <Title>Nanoscale Advances</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1039/d0na00700e</DOI> <SCP-Number>2-s2.0-85102279091</SCP-Number> <Authors> <Author> <DisplayName>Aragón F.F.H.</DisplayName> <Person id="rp05532" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villegas-Lelovsky L.</DisplayName> <Person id="rp05736" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cabral L.</DisplayName> <Person id="rp05738" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Lima M.P.</DisplayName> <Person id="rp05735" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mesquita A.</DisplayName> <Person id="rp05737" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Coaquira J.A.H.</DisplayName> <Person id="rp05529" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Royal Society of Chemistry</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>https://creativecommons.org/licenses/by-nc/4.0/</License> <Keyword>Titanium dioxide</Keyword> <Keyword>Magnetic properties</Keyword> <Keyword>Magnetism</Keyword> <Keyword>Metal nanoparticles</Keyword> <Keyword>Nanostructured materials</Keyword> <Keyword>OxidationOxide minerals</Keyword> <Keyword>Oxide semiconductors</Keyword> <Keyword>Oxygen vacancies</Keyword> <Keyword>Physicochemical properties</Keyword> <Keyword>Point defects</Keyword> <Keyword>Semiconductor doping</Keyword> <Abstract>During the last decade, there was a substantial increase in the research on metal-doped oxide semiconductor nanoparticles due to advances in the engineering of nanomaterials and their potential application in spintronics, biomedicine and photocatalysis fields. In this regard, doping a nanomaterial is a powerful tool to tune its physicochemical properties. The aim of this work is to shine a new light on the role of the neighbouring elements on the oxidation state of the Ce-impurity, from both experimental and theoretical points of view. Herein, we present an accurate study of the mechanisms involved in the oxidation states of the Ce-ions during the doping process of SnO2nanoparticles (NPs) prepared by the polymeric precursor method. X-ray diffraction measurements have displayed the tetragonal rutile-type SnO2phase in all samples. However, the Bragg’s peak (111) and (220) located at 2??29° and ?47° evidence the formation of a secondary CeO2phase for samples with Ce content up to 10%. X-ray absorption near-edge structure (XANES) measurements, at Ce L3 edge, were performed on the NPs as a function of Ce content. The results show, on one side, the coexistence of Ce3+and Ce4+states in all samples; and on the other side, a clear reduction in the Ce3+population driven by the increase of Ce content. It is shown that this is induced by the neighboring cation, and confirmed by magnetic measurements. The monotonic damping of the Ce3+/Ce4+ratio experimentally, was connected with theoretical calculationsviadensity functional theory by simulating a variety of point defects composed of Ce impurities and surrounding oxygen vacancies. We found that the number of oxygen vacancies around the Ce-ions is the main ingredient to change the Ce oxidation state, and hence the magnetic properties of Ce-doped SnO2NPs. The presented results pave the way for handling the magnetic properties of oxides through the control of the oxidation state of impurities. © The Royal Society of Chemistry 2021.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.243791 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).