Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells
Descripción del Articulo
This paper was written in the context of the project: “Desarrollo de materiales avanzados para el diseño de nuevos productos y servicios tecnológicos para la minería Peruana” founded by CONCYTEC (FONDECYT and GRUPO BANCO MUNDIAL) under the contract number N° 032-2019-FONDECYT-BM-INC.INV. The authors...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/3067 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/3067 https://doi.org/10.1016/j.engstruct.2021.112158 |
Nivel de acceso: | acceso abierto |
Materia: | Three-dimensional solutions Differential quadrature method Electrostatic equilibrium Equilibrium equations Magnetostatics equilibrium Shell https://purl.org/pe-repo/ocde/ford#1.01.02 |
id |
CONC_d56f290ac65740977c5cc777ede4103b |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/3067 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells |
title |
Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells |
spellingShingle |
Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells Monge J.C. Three-dimensional solutions Differential quadrature method Electrostatic equilibrium Equilibrium equations Magnetostatics equilibrium Shell https://purl.org/pe-repo/ocde/ford#1.01.02 |
title_short |
Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells |
title_full |
Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells |
title_fullStr |
Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells |
title_full_unstemmed |
Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells |
title_sort |
Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells |
author |
Monge J.C. |
author_facet |
Monge J.C. Mantari J.L. |
author_role |
author |
author2 |
Mantari J.L. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Monge J.C. Mantari J.L. |
dc.subject.none.fl_str_mv |
Three-dimensional solutions |
topic |
Three-dimensional solutions Differential quadrature method Electrostatic equilibrium Equilibrium equations Magnetostatics equilibrium Shell https://purl.org/pe-repo/ocde/ford#1.01.02 |
dc.subject.es_PE.fl_str_mv |
Differential quadrature method Electrostatic equilibrium Equilibrium equations Magnetostatics equilibrium Shell |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.02 |
description |
This paper was written in the context of the project: “Desarrollo de materiales avanzados para el diseño de nuevos productos y servicios tecnológicos para la minería Peruana” founded by CONCYTEC (FONDECYT and GRUPO BANCO MUNDIAL) under the contract number N° 032-2019-FONDECYT-BM-INC.INV. The authors of this manuscript appreciate the financial support from the Peruvian Government. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/3067 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.engstruct.2021.112158 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85104950868 |
url |
https://hdl.handle.net/20.500.12390/3067 https://doi.org/10.1016/j.engstruct.2021.112158 |
identifier_str_mv |
2-s2.0-85104950868 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Engineering Structures |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1844883070336892928 |
spelling |
Publicationrp05555600rp01200600Monge J.C.Mantari J.L.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/3067https://doi.org/10.1016/j.engstruct.2021.1121582-s2.0-85104950868This paper was written in the context of the project: “Desarrollo de materiales avanzados para el diseño de nuevos productos y servicios tecnológicos para la minería Peruana” founded by CONCYTEC (FONDECYT and GRUPO BANCO MUNDIAL) under the contract number N° 032-2019-FONDECYT-BM-INC.INV. The authors of this manuscript appreciate the financial support from the Peruvian Government.This paper presents an exact solution for the static analysis of magneto-electro-elastic simply supported shallow shells panels. The mechanical equations are derived via equilibrium elasticity relations. The electrical and magnetic governing equations are obtained by electrostatic and magnetostatic equilibrium relations. The shell displacements, electrical and magnetic potential functions are solved analytically by the Navier closed form solutions. The governing equations formulated in terms of thickness coordinate are solved semi-analytically by using the differential quadrature method. The Lagrange polynomials are employed as basis functions. The equations are discretized per each layer by the Chebyshev-Gauss-Lobatto grid distribution. The continuity conditions in the adjacent layers for mechanical displacement, transverse dielectric displacement, electric and magnetic scalar function and transverse magnetic induction are complied. The correct load traction condition is considered at the top and bottom of the shell. Numerical results for spherical, cylindrical and rectangular panels are reported. The results are in excellent agreement with other 3D elasticity solutions reported in the literature so a new benchmark problem for shell is proposed. © 2021 Elsevier LtdConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier LtdEngineering Structuresinfo:eu-repo/semantics/openAccessThree-dimensional solutionsDifferential quadrature method-1Electrostatic equilibrium-1Equilibrium equations-1Magnetostatics equilibrium-1Shell-1https://purl.org/pe-repo/ocde/ford#1.01.02-1Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shellsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/3067oai:repositorio.concytec.gob.pe:20.500.12390/30672024-05-30 16:13:41.15http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2b85a537-1294-48ed-91ca-b05bd5de4da6"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells</Title> <PublishedIn> <Publication> <Title>Engineering Structures</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1016/j.engstruct.2021.112158</DOI> <SCP-Number>2-s2.0-85104950868</SCP-Number> <Authors> <Author> <DisplayName>Monge J.C.</DisplayName> <Person id="rp05555" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mantari J.L.</DisplayName> <Person id="rp01200" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Three-dimensional solutions</Keyword> <Keyword>Differential quadrature method</Keyword> <Keyword>Electrostatic equilibrium</Keyword> <Keyword>Equilibrium equations</Keyword> <Keyword>Magnetostatics equilibrium</Keyword> <Keyword>Shell</Keyword> <Abstract>This paper presents an exact solution for the static analysis of magneto-electro-elastic simply supported shallow shells panels. The mechanical equations are derived via equilibrium elasticity relations. The electrical and magnetic governing equations are obtained by electrostatic and magnetostatic equilibrium relations. The shell displacements, electrical and magnetic potential functions are solved analytically by the Navier closed form solutions. The governing equations formulated in terms of thickness coordinate are solved semi-analytically by using the differential quadrature method. The Lagrange polynomials are employed as basis functions. The equations are discretized per each layer by the Chebyshev-Gauss-Lobatto grid distribution. The continuity conditions in the adjacent layers for mechanical displacement, transverse dielectric displacement, electric and magnetic scalar function and transverse magnetic induction are complied. The correct load traction condition is considered at the top and bottom of the shell. Numerical results for spherical, cylindrical and rectangular panels are reported. The results are in excellent agreement with other 3D elasticity solutions reported in the literature so a new benchmark problem for shell is proposed. © 2021 Elsevier Ltd</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.243185 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).