Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells

Descripción del Articulo

This paper was written in the context of the project: “Desarrollo de materiales avanzados para el diseño de nuevos productos y servicios tecnológicos para la minería Peruana” founded by CONCYTEC (FONDECYT and GRUPO BANCO MUNDIAL) under the contract number N° 032-2019-FONDECYT-BM-INC.INV. The authors...

Descripción completa

Detalles Bibliográficos
Autores: Monge J.C., Mantari J.L.
Formato: artículo
Fecha de Publicación:2021
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/3067
Enlace del recurso:https://hdl.handle.net/20.500.12390/3067
https://doi.org/10.1016/j.engstruct.2021.112158
Nivel de acceso:acceso abierto
Materia:Three-dimensional solutions
Differential quadrature method
Electrostatic equilibrium
Equilibrium equations
Magnetostatics equilibrium
Shell
https://purl.org/pe-repo/ocde/ford#1.01.02
id CONC_d56f290ac65740977c5cc777ede4103b
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/3067
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells
title Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells
spellingShingle Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells
Monge J.C.
Three-dimensional solutions
Differential quadrature method
Electrostatic equilibrium
Equilibrium equations
Magnetostatics equilibrium
Shell
https://purl.org/pe-repo/ocde/ford#1.01.02
title_short Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells
title_full Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells
title_fullStr Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells
title_full_unstemmed Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells
title_sort Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells
author Monge J.C.
author_facet Monge J.C.
Mantari J.L.
author_role author
author2 Mantari J.L.
author2_role author
dc.contributor.author.fl_str_mv Monge J.C.
Mantari J.L.
dc.subject.none.fl_str_mv Three-dimensional solutions
topic Three-dimensional solutions
Differential quadrature method
Electrostatic equilibrium
Equilibrium equations
Magnetostatics equilibrium
Shell
https://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.es_PE.fl_str_mv Differential quadrature method
Electrostatic equilibrium
Equilibrium equations
Magnetostatics equilibrium
Shell
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.02
description This paper was written in the context of the project: “Desarrollo de materiales avanzados para el diseño de nuevos productos y servicios tecnológicos para la minería Peruana” founded by CONCYTEC (FONDECYT and GRUPO BANCO MUNDIAL) under the contract number N° 032-2019-FONDECYT-BM-INC.INV. The authors of this manuscript appreciate the financial support from the Peruvian Government.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/3067
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.engstruct.2021.112158
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85104950868
url https://hdl.handle.net/20.500.12390/3067
https://doi.org/10.1016/j.engstruct.2021.112158
identifier_str_mv 2-s2.0-85104950868
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Engineering Structures
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883070336892928
spelling Publicationrp05555600rp01200600Monge J.C.Mantari J.L.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2021https://hdl.handle.net/20.500.12390/3067https://doi.org/10.1016/j.engstruct.2021.1121582-s2.0-85104950868This paper was written in the context of the project: “Desarrollo de materiales avanzados para el diseño de nuevos productos y servicios tecnológicos para la minería Peruana” founded by CONCYTEC (FONDECYT and GRUPO BANCO MUNDIAL) under the contract number N° 032-2019-FONDECYT-BM-INC.INV. The authors of this manuscript appreciate the financial support from the Peruvian Government.This paper presents an exact solution for the static analysis of magneto-electro-elastic simply supported shallow shells panels. The mechanical equations are derived via equilibrium elasticity relations. The electrical and magnetic governing equations are obtained by electrostatic and magnetostatic equilibrium relations. The shell displacements, electrical and magnetic potential functions are solved analytically by the Navier closed form solutions. The governing equations formulated in terms of thickness coordinate are solved semi-analytically by using the differential quadrature method. The Lagrange polynomials are employed as basis functions. The equations are discretized per each layer by the Chebyshev-Gauss-Lobatto grid distribution. The continuity conditions in the adjacent layers for mechanical displacement, transverse dielectric displacement, electric and magnetic scalar function and transverse magnetic induction are complied. The correct load traction condition is considered at the top and bottom of the shell. Numerical results for spherical, cylindrical and rectangular panels are reported. The results are in excellent agreement with other 3D elasticity solutions reported in the literature so a new benchmark problem for shell is proposed. © 2021 Elsevier LtdConsejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier LtdEngineering Structuresinfo:eu-repo/semantics/openAccessThree-dimensional solutionsDifferential quadrature method-1Electrostatic equilibrium-1Equilibrium equations-1Magnetostatics equilibrium-1Shell-1https://purl.org/pe-repo/ocde/ford#1.01.02-1Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shellsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/3067oai:repositorio.concytec.gob.pe:20.500.12390/30672024-05-30 16:13:41.15http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2b85a537-1294-48ed-91ca-b05bd5de4da6"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Three dimensional numerical solution for the bending study of magneto-piezo-elastic spherical and cylindrical shells</Title> <PublishedIn> <Publication> <Title>Engineering Structures</Title> </Publication> </PublishedIn> <PublicationDate>2021</PublicationDate> <DOI>https://doi.org/10.1016/j.engstruct.2021.112158</DOI> <SCP-Number>2-s2.0-85104950868</SCP-Number> <Authors> <Author> <DisplayName>Monge J.C.</DisplayName> <Person id="rp05555" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Mantari J.L.</DisplayName> <Person id="rp01200" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier Ltd</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Three-dimensional solutions</Keyword> <Keyword>Differential quadrature method</Keyword> <Keyword>Electrostatic equilibrium</Keyword> <Keyword>Equilibrium equations</Keyword> <Keyword>Magnetostatics equilibrium</Keyword> <Keyword>Shell</Keyword> <Abstract>This paper presents an exact solution for the static analysis of magneto-electro-elastic simply supported shallow shells panels. The mechanical equations are derived via equilibrium elasticity relations. The electrical and magnetic governing equations are obtained by electrostatic and magnetostatic equilibrium relations. The shell displacements, electrical and magnetic potential functions are solved analytically by the Navier closed form solutions. The governing equations formulated in terms of thickness coordinate are solved semi-analytically by using the differential quadrature method. The Lagrange polynomials are employed as basis functions. The equations are discretized per each layer by the Chebyshev-Gauss-Lobatto grid distribution. The continuity conditions in the adjacent layers for mechanical displacement, transverse dielectric displacement, electric and magnetic scalar function and transverse magnetic induction are complied. The correct load traction condition is considered at the top and bottom of the shell. Numerical results for spherical, cylindrical and rectangular panels are reported. The results are in excellent agreement with other 3D elasticity solutions reported in the literature so a new benchmark problem for shell is proposed. © 2021 Elsevier Ltd</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.243185
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).