Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure

Descripción del Articulo

Earth's behavior comprehension can be achieved by the analysis of Remote Sensing data, but considering the unprecedented volumes of information currently provided by different satellites sensors, the problem can be regarded as a big data problem. Machine learning techniques have the potential t...

Descripción completa

Detalles Bibliográficos
Autores: Ayma V., Beltrán C., Happ P., Costa G., Feitosa R.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2742
Enlace del recurso:https://hdl.handle.net/20.500.12390/2742
https://doi.org/10.1117/12.2533700
Nivel de acceso:acceso abierto
Materia:Remote Sensing
Big data
Cloud computing
Clustering technique
Glacier changes
http://purl.org/pe-repo/ocde/ford#2.02.04
id CONC_d4370aa22ad2cb26620ed6271716f270
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2742
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure
title Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure
spellingShingle Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure
Ayma V.
Remote Sensing
Big data
Cloud computing
Clustering technique
Glacier changes
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure
title_full Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure
title_fullStr Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure
title_full_unstemmed Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure
title_sort Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure
author Ayma V.
author_facet Ayma V.
Beltrán C.
Happ P.
Costa G.
Feitosa R.
author_role author
author2 Beltrán C.
Happ P.
Costa G.
Feitosa R.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ayma V.
Beltrán C.
Happ P.
Costa G.
Feitosa R.
dc.subject.none.fl_str_mv Remote Sensing
topic Remote Sensing
Big data
Cloud computing
Clustering technique
Glacier changes
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Big data
Cloud computing
Clustering technique
Glacier changes
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description Earth's behavior comprehension can be achieved by the analysis of Remote Sensing data, but considering the unprecedented volumes of information currently provided by different satellites sensors, the problem can be regarded as a big data problem. Machine learning techniques have the potential to improve the analysis of this type of data; however, most current machine learning algorithms are unable to properly process such huge volumes of data. In the attempt to overcome the computational limitations related to Remote Sensing Big Data analysis, we implemented the K-Means algorithms, a clustering technique, as distributed solution, exploiting the capabilities of cloud computing infrastructure for processing very large datasets. The solution was developed over the InterCloud Data Mining Package, which is a suite of distributed classification methods, previously employed in hyperspectral image analysis. In this work we extended the functionalities of that package, by making it able to process multispectral images using the aforementioned clustering algorithm. To validate our proposal, we analyzed the Ausangate glacier, located on the Andes Mountains, in Peru, by mapping the changes in such environment through a multi-temporal Remote Sensing analysis. Our results and conclusions are focused on the thematic accuracy and the computational performance of the proposed solution. Thematic accuracy was assessed by comparing the automatically detected glacier areas with manually selected ground truth data. Moreover, we compared the computational load involved in executing the respective processes sequentially and in a distributed fashion, using a physical local machine and cloud computing infrastructure. © 2019 SPIE. Downloading of the abstract is permitted for personal use only.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2742
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1117/12.2533700
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85073907915
url https://hdl.handle.net/20.500.12390/2742
https://doi.org/10.1117/12.2533700
identifier_str_mv 2-s2.0-85073907915
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Proceedings of SPIE - The International Society for Optical Engineering
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv SPIE
publisher.none.fl_str_mv SPIE
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883029294579712
spelling Publicationrp06439600rp07328600rp07331600rp07330600rp07329600Ayma V.Beltrán C.Happ P.Costa G.Feitosa R.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2742https://doi.org/10.1117/12.25337002-s2.0-85073907915Earth's behavior comprehension can be achieved by the analysis of Remote Sensing data, but considering the unprecedented volumes of information currently provided by different satellites sensors, the problem can be regarded as a big data problem. Machine learning techniques have the potential to improve the analysis of this type of data; however, most current machine learning algorithms are unable to properly process such huge volumes of data. In the attempt to overcome the computational limitations related to Remote Sensing Big Data analysis, we implemented the K-Means algorithms, a clustering technique, as distributed solution, exploiting the capabilities of cloud computing infrastructure for processing very large datasets. The solution was developed over the InterCloud Data Mining Package, which is a suite of distributed classification methods, previously employed in hyperspectral image analysis. In this work we extended the functionalities of that package, by making it able to process multispectral images using the aforementioned clustering algorithm. To validate our proposal, we analyzed the Ausangate glacier, located on the Andes Mountains, in Peru, by mapping the changes in such environment through a multi-temporal Remote Sensing analysis. Our results and conclusions are focused on the thematic accuracy and the computational performance of the proposed solution. Thematic accuracy was assessed by comparing the automatically detected glacier areas with manually selected ground truth data. Moreover, we compared the computational load involved in executing the respective processes sequentially and in a distributed fashion, using a physical local machine and cloud computing infrastructure. © 2019 SPIE. Downloading of the abstract is permitted for personal use only.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSPIEProceedings of SPIE - The International Society for Optical Engineeringinfo:eu-repo/semantics/openAccessRemote SensingBig data-1Cloud computing-1Clustering technique-1Glacier changes-1http://purl.org/pe-repo/ocde/ford#2.02.04-1Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructureinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2742oai:repositorio.concytec.gob.pe:20.500.12390/27422024-05-30 16:10:59.806http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="c7df43aa-a1fd-4142-a09a-871120a65282"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure</Title> <PublishedIn> <Publication> <Title>Proceedings of SPIE - The International Society for Optical Engineering</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1117/12.2533700</DOI> <SCP-Number>2-s2.0-85073907915</SCP-Number> <Authors> <Author> <DisplayName>Ayma V.</DisplayName> <Person id="rp06439" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Beltrán C.</DisplayName> <Person id="rp07328" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Happ P.</DisplayName> <Person id="rp07331" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Costa G.</DisplayName> <Person id="rp07330" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Feitosa R.</DisplayName> <Person id="rp07329" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>SPIE</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Remote Sensing</Keyword> <Keyword>Big data</Keyword> <Keyword>Cloud computing</Keyword> <Keyword>Clustering technique</Keyword> <Keyword>Glacier changes</Keyword> <Abstract>Earth&apos;s behavior comprehension can be achieved by the analysis of Remote Sensing data, but considering the unprecedented volumes of information currently provided by different satellites sensors, the problem can be regarded as a big data problem. Machine learning techniques have the potential to improve the analysis of this type of data; however, most current machine learning algorithms are unable to properly process such huge volumes of data. In the attempt to overcome the computational limitations related to Remote Sensing Big Data analysis, we implemented the K-Means algorithms, a clustering technique, as distributed solution, exploiting the capabilities of cloud computing infrastructure for processing very large datasets. The solution was developed over the InterCloud Data Mining Package, which is a suite of distributed classification methods, previously employed in hyperspectral image analysis. In this work we extended the functionalities of that package, by making it able to process multispectral images using the aforementioned clustering algorithm. To validate our proposal, we analyzed the Ausangate glacier, located on the Andes Mountains, in Peru, by mapping the changes in such environment through a multi-temporal Remote Sensing analysis. Our results and conclusions are focused on the thematic accuracy and the computational performance of the proposed solution. Thematic accuracy was assessed by comparing the automatically detected glacier areas with manually selected ground truth data. Moreover, we compared the computational load involved in executing the respective processes sequentially and in a distributed fashion, using a physical local machine and cloud computing infrastructure. © 2019 SPIE. Downloading of the abstract is permitted for personal use only.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.394457
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).