Asymptotic expansivity
Descripción del Articulo
KL was partially supported by NRF grant No. 2018R1A2B3001457 . CAM was partially supported by CNPq -Brazil No. 307776/2019-0 and the NRF Brain Pool Grant No. 2020H1D3A2A01085417 . HV was partially supported by Universidad Nacional de Ingeniería P-CC-2021-000666 , FC-PF-33-2021 and Fondecyt-Concytec...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2974 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/2974 https://doi.org/10.1016/j.jmaa.2021.125729 |
| Nivel de acceso: | acceso abierto |
| Materia: | Topological entropy Asymptotically expansive Expansive map https://purl.org/pe-repo/ocde/ford#1.01.01 |
| id |
CONC_d1f6a14a6bb8814aef9fe4c7cb5ea1d4 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2974 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| spelling |
Publicationrp06024600rp05889600rp05887600Lee K.Morales C.A.Villavicencio H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2022https://hdl.handle.net/20.500.12390/2974https://doi.org/10.1016/j.jmaa.2021.1257292-s2.0-85116556212KL was partially supported by NRF grant No. 2018R1A2B3001457 . CAM was partially supported by CNPq -Brazil No. 307776/2019-0 and the NRF Brain Pool Grant No. 2020H1D3A2A01085417 . HV was partially supported by Universidad Nacional de Ingeniería P-CC-2021-000666 , FC-PF-33-2021 and Fondecyt-Concytec contract 100-2018 .We study continuous maps of metric spaces for which two nearby orbits are asymptotic (termed asymptotically expansive for short). We also analyze the bi-asymptotically expansive homeomorphisms namely asymptotically expansive homeomorphisms with asymptotically expansive inverse. Indeed, we obtain necessary and sufficient conditions for asymptotic expansivity, characterize the asymptotically expansive homeomorphisms of the circle, prove a spectral decomposition theorem and estimate the entropy through the growth rate of the periodic orbits. © 2021 Elsevier Inc.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengAcademic Press Inc.Journal of Mathematical Analysis and Applicationsinfo:eu-repo/semantics/openAccessTopological entropyAsymptotically expansive-1Expansive map-1https://purl.org/pe-repo/ocde/ford#1.01.01-1Asymptotic expansivityinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2974oai:repositorio.concytec.gob.pe:20.500.12390/29742024-05-30 16:12:42.732http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2d6f9694-b31b-4535-81e9-64c3b2c9b2af"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Asymptotic expansivity</Title> <PublishedIn> <Publication> <Title>Journal of Mathematical Analysis and Applications</Title> </Publication> </PublishedIn> <PublicationDate>2022</PublicationDate> <DOI>https://doi.org/10.1016/j.jmaa.2021.125729</DOI> <SCP-Number>2-s2.0-85116556212</SCP-Number> <Authors> <Author> <DisplayName>Lee K.</DisplayName> <Person id="rp06024" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morales C.A.</DisplayName> <Person id="rp05889" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villavicencio H.</DisplayName> <Person id="rp05887" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Academic Press Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Topological entropy</Keyword> <Keyword>Asymptotically expansive</Keyword> <Keyword>Expansive map</Keyword> <Abstract>We study continuous maps of metric spaces for which two nearby orbits are asymptotic (termed asymptotically expansive for short). We also analyze the bi-asymptotically expansive homeomorphisms namely asymptotically expansive homeomorphisms with asymptotically expansive inverse. Indeed, we obtain necessary and sufficient conditions for asymptotic expansivity, characterize the asymptotically expansive homeomorphisms of the circle, prove a spectral decomposition theorem and estimate the entropy through the growth rate of the periodic orbits. © 2021 Elsevier Inc.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| dc.title.none.fl_str_mv |
Asymptotic expansivity |
| title |
Asymptotic expansivity |
| spellingShingle |
Asymptotic expansivity Lee K. Topological entropy Asymptotically expansive Expansive map https://purl.org/pe-repo/ocde/ford#1.01.01 |
| title_short |
Asymptotic expansivity |
| title_full |
Asymptotic expansivity |
| title_fullStr |
Asymptotic expansivity |
| title_full_unstemmed |
Asymptotic expansivity |
| title_sort |
Asymptotic expansivity |
| author |
Lee K. |
| author_facet |
Lee K. Morales C.A. Villavicencio H. |
| author_role |
author |
| author2 |
Morales C.A. Villavicencio H. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Lee K. Morales C.A. Villavicencio H. |
| dc.subject.none.fl_str_mv |
Topological entropy |
| topic |
Topological entropy Asymptotically expansive Expansive map https://purl.org/pe-repo/ocde/ford#1.01.01 |
| dc.subject.es_PE.fl_str_mv |
Asymptotically expansive Expansive map |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.01 |
| description |
KL was partially supported by NRF grant No. 2018R1A2B3001457 . CAM was partially supported by CNPq -Brazil No. 307776/2019-0 and the NRF Brain Pool Grant No. 2020H1D3A2A01085417 . HV was partially supported by Universidad Nacional de Ingeniería P-CC-2021-000666 , FC-PF-33-2021 and Fondecyt-Concytec contract 100-2018 . |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2974 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.jmaa.2021.125729 |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85116556212 |
| url |
https://hdl.handle.net/20.500.12390/2974 https://doi.org/10.1016/j.jmaa.2021.125729 |
| identifier_str_mv |
2-s2.0-85116556212 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
Journal of Mathematical Analysis and Applications |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Academic Press Inc. |
| publisher.none.fl_str_mv |
Academic Press Inc. |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883070805606400 |
| score |
13.402391 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).