Asymptotic expansivity

Descripción del Articulo

KL was partially supported by NRF grant No. 2018R1A2B3001457 . CAM was partially supported by CNPq -Brazil No. 307776/2019-0 and the NRF Brain Pool Grant No. 2020H1D3A2A01085417 . HV was partially supported by Universidad Nacional de Ingeniería P-CC-2021-000666 , FC-PF-33-2021 and Fondecyt-Concytec...

Descripción completa

Detalles Bibliográficos
Autores: Lee K., Morales C.A., Villavicencio H.
Formato: artículo
Fecha de Publicación:2022
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2974
Enlace del recurso:https://hdl.handle.net/20.500.12390/2974
https://doi.org/10.1016/j.jmaa.2021.125729
Nivel de acceso:acceso abierto
Materia:Topological entropy
Asymptotically expansive
Expansive map
https://purl.org/pe-repo/ocde/ford#1.01.01
id CONC_d1f6a14a6bb8814aef9fe4c7cb5ea1d4
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2974
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp06024600rp05889600rp05887600Lee K.Morales C.A.Villavicencio H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2022https://hdl.handle.net/20.500.12390/2974https://doi.org/10.1016/j.jmaa.2021.1257292-s2.0-85116556212KL was partially supported by NRF grant No. 2018R1A2B3001457 . CAM was partially supported by CNPq -Brazil No. 307776/2019-0 and the NRF Brain Pool Grant No. 2020H1D3A2A01085417 . HV was partially supported by Universidad Nacional de Ingeniería P-CC-2021-000666 , FC-PF-33-2021 and Fondecyt-Concytec contract 100-2018 .We study continuous maps of metric spaces for which two nearby orbits are asymptotic (termed asymptotically expansive for short). We also analyze the bi-asymptotically expansive homeomorphisms namely asymptotically expansive homeomorphisms with asymptotically expansive inverse. Indeed, we obtain necessary and sufficient conditions for asymptotic expansivity, characterize the asymptotically expansive homeomorphisms of the circle, prove a spectral decomposition theorem and estimate the entropy through the growth rate of the periodic orbits. © 2021 Elsevier Inc.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengAcademic Press Inc.Journal of Mathematical Analysis and Applicationsinfo:eu-repo/semantics/openAccessTopological entropyAsymptotically expansive-1Expansive map-1https://purl.org/pe-repo/ocde/ford#1.01.01-1Asymptotic expansivityinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2974oai:repositorio.concytec.gob.pe:20.500.12390/29742024-05-30 16:12:42.732http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2d6f9694-b31b-4535-81e9-64c3b2c9b2af"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Asymptotic expansivity</Title> <PublishedIn> <Publication> <Title>Journal of Mathematical Analysis and Applications</Title> </Publication> </PublishedIn> <PublicationDate>2022</PublicationDate> <DOI>https://doi.org/10.1016/j.jmaa.2021.125729</DOI> <SCP-Number>2-s2.0-85116556212</SCP-Number> <Authors> <Author> <DisplayName>Lee K.</DisplayName> <Person id="rp06024" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Morales C.A.</DisplayName> <Person id="rp05889" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Villavicencio H.</DisplayName> <Person id="rp05887" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Academic Press Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Topological entropy</Keyword> <Keyword>Asymptotically expansive</Keyword> <Keyword>Expansive map</Keyword> <Abstract>We study continuous maps of metric spaces for which two nearby orbits are asymptotic (termed asymptotically expansive for short). We also analyze the bi-asymptotically expansive homeomorphisms namely asymptotically expansive homeomorphisms with asymptotically expansive inverse. Indeed, we obtain necessary and sufficient conditions for asymptotic expansivity, characterize the asymptotically expansive homeomorphisms of the circle, prove a spectral decomposition theorem and estimate the entropy through the growth rate of the periodic orbits. © 2021 Elsevier Inc.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv Asymptotic expansivity
title Asymptotic expansivity
spellingShingle Asymptotic expansivity
Lee K.
Topological entropy
Asymptotically expansive
Expansive map
https://purl.org/pe-repo/ocde/ford#1.01.01
title_short Asymptotic expansivity
title_full Asymptotic expansivity
title_fullStr Asymptotic expansivity
title_full_unstemmed Asymptotic expansivity
title_sort Asymptotic expansivity
author Lee K.
author_facet Lee K.
Morales C.A.
Villavicencio H.
author_role author
author2 Morales C.A.
Villavicencio H.
author2_role author
author
dc.contributor.author.fl_str_mv Lee K.
Morales C.A.
Villavicencio H.
dc.subject.none.fl_str_mv Topological entropy
topic Topological entropy
Asymptotically expansive
Expansive map
https://purl.org/pe-repo/ocde/ford#1.01.01
dc.subject.es_PE.fl_str_mv Asymptotically expansive
Expansive map
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.01
description KL was partially supported by NRF grant No. 2018R1A2B3001457 . CAM was partially supported by CNPq -Brazil No. 307776/2019-0 and the NRF Brain Pool Grant No. 2020H1D3A2A01085417 . HV was partially supported by Universidad Nacional de Ingeniería P-CC-2021-000666 , FC-PF-33-2021 and Fondecyt-Concytec contract 100-2018 .
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2974
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.jmaa.2021.125729
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85116556212
url https://hdl.handle.net/20.500.12390/2974
https://doi.org/10.1016/j.jmaa.2021.125729
identifier_str_mv 2-s2.0-85116556212
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Journal of Mathematical Analysis and Applications
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Academic Press Inc.
publisher.none.fl_str_mv Academic Press Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175480785240064
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).