Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity

Descripción del Articulo

The research leading to these results has received funding from the French Agence Nationale de la Recherche, grant agreement ANR-15-CE40-0006 (CoMeDiC), the Brazilian Federal Agency of Support and Evaluation of Postgraduate Education (program CAPES/PVE: grant 064965/2014-01), the Peruvian agency Con...

Descripción completa

Detalles Bibliográficos
Autores: Cahuina, Edward Cayllahua, Cousty, Jean, Kenmochi, Yukiko, de Albuquerque Araújo, Arnaldo, Cámara-Chávez, Guillermo, Guimarães, Silvio Jamil F.
Formato: artículo
Fecha de Publicación:2018
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1338
Enlace del recurso:https://hdl.handle.net/20.500.12390/1338
https://doi.org/10.1142/s0218001419400081
Nivel de acceso:acceso abierto
Materia:quasi-flat zone
Image segmentation
hierarchical analysis
incremental algorithm
https://purl.org/pe-repo/ocde/ford#2.02.03
id CONC_d0dd09f7ed21c7bb92602f8341407d7e
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1338
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity
title Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity
spellingShingle Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity
Cahuina, Edward Cayllahua
quasi-flat zone
Image segmentation
hierarchical analysis
incremental algorithm
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity
title_full Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity
title_fullStr Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity
title_full_unstemmed Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity
title_sort Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity
author Cahuina, Edward Cayllahua
author_facet Cahuina, Edward Cayllahua
Cousty, Jean
Kenmochi, Yukiko
de Albuquerque Araújo, Arnaldo
Cámara-Chávez, Guillermo
Guimarães, Silvio Jamil F.
author_role author
author2 Cousty, Jean
Kenmochi, Yukiko
de Albuquerque Araújo, Arnaldo
Cámara-Chávez, Guillermo
Guimarães, Silvio Jamil F.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Cahuina, Edward Cayllahua
Cousty, Jean
Kenmochi, Yukiko
de Albuquerque Araújo, Arnaldo
Cámara-Chávez, Guillermo
Guimarães, Silvio Jamil F.
dc.subject.none.fl_str_mv quasi-flat zone
topic quasi-flat zone
Image segmentation
hierarchical analysis
incremental algorithm
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.es_PE.fl_str_mv Image segmentation
hierarchical analysis
incremental algorithm
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description The research leading to these results has received funding from the French Agence Nationale de la Recherche, grant agreement ANR-15-CE40-0006 (CoMeDiC), the Brazilian Federal Agency of Support and Evaluation of Postgraduate Education (program CAPES/PVE: grant 064965/2014-01), the Peruvian agency Consejo Na-cional de Ciencia, Tecnolog´ıa e Innovaci´on Tecnol´ogica CONCYTEC (contract N-101-2016-. FONDECYT-DE). The first author would like to thank Brazilian agencies CNPq and CAPES and Peruvian agency CONCYTEC for the financial support during his thesis.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2018-12-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1338
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1142/s0218001419400081
url https://hdl.handle.net/20.500.12390/1338
https://doi.org/10.1142/s0218001419400081
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv International Journal of Pattern Recognition and Artificial Intelligence
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv World Scientific Pub Co Pte Lt
publisher.none.fl_str_mv World Scientific Pub Co Pte Lt
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175753631006720
spelling Publicationrp03942600rp03940600rp03941600rp03937600rp03939600rp03938600Cahuina, Edward CayllahuaCousty, JeanKenmochi, Yukikode Albuquerque Araújo, ArnaldoCámara-Chávez, GuillermoGuimarães, Silvio Jamil F.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018-12-27https://hdl.handle.net/20.500.12390/1338https://doi.org/10.1142/s0218001419400081The research leading to these results has received funding from the French Agence Nationale de la Recherche, grant agreement ANR-15-CE40-0006 (CoMeDiC), the Brazilian Federal Agency of Support and Evaluation of Postgraduate Education (program CAPES/PVE: grant 064965/2014-01), the Peruvian agency Consejo Na-cional de Ciencia, Tecnolog´ıa e Innovaci´on Tecnol´ogica CONCYTEC (contract N-101-2016-. FONDECYT-DE). The first author would like to thank Brazilian agencies CNPq and CAPES and Peruvian agency CONCYTEC for the financial support during his thesis.Hierarchical image segmentation provides a region-oriented scale-space, i.e. a set of image segmentations at different detail levels in which the segmentations at finer levels are nested with respect to those at coarser levels. However, most image segmentation algorithms, among which a graph-based image segmentation method relying on a region merging criterion was proposed by Felzenszwalb–Huttenlocher in 2004, do not lead to a hierarchy. In order to cope with a demand for hierarchical segmentation, Guimarães et al. proposed in 2012 a method for hierarchizing the popular Felzenszwalb–Huttenlocher method, without providing an algorithm to compute the proposed hierarchy. This paper is devoted to providing a series of algorithms to compute the result of this hierarchical graph-based image segmentation method efficiently, based mainly on two ideas: optimal dissimilarity measuring and incremental update of the hierarchical structure. Experiments show that, for an image of size 321 × 481 pixels, the most efficient algorithm produces the result in half a second whereas the most naive one requires more than 4 h.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengWorld Scientific Pub Co Pte LtInternational Journal of Pattern Recognition and Artificial Intelligenceinfo:eu-repo/semantics/openAccessquasi-flat zoneImage segmentation-1hierarchical analysis-1incremental algorithm-1https://purl.org/pe-repo/ocde/ford#2.02.03-1Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarityinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1338oai:repositorio.concytec.gob.pe:20.500.12390/13382024-05-30 15:24:02.036http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="cd9772aa-d162-4bc7-80cf-5e9aa766bd68"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity</Title> <PublishedIn> <Publication> <Title>International Journal of Pattern Recognition and Artificial Intelligence</Title> </Publication> </PublishedIn> <PublicationDate>2018-12-27</PublicationDate> <DOI>https://doi.org/10.1142/s0218001419400081</DOI> <Authors> <Author> <DisplayName>Cahuina, Edward Cayllahua</DisplayName> <Person id="rp03942" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cousty, Jean</DisplayName> <Person id="rp03940" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Kenmochi, Yukiko</DisplayName> <Person id="rp03941" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>de Albuquerque Araújo, Arnaldo</DisplayName> <Person id="rp03937" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cámara-Chávez, Guillermo</DisplayName> <Person id="rp03939" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Guimarães, Silvio Jamil F.</DisplayName> <Person id="rp03938" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>World Scientific Pub Co Pte Lt</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>quasi-flat zone</Keyword> <Keyword>Image segmentation</Keyword> <Keyword>hierarchical analysis</Keyword> <Keyword>incremental algorithm</Keyword> <Abstract>Hierarchical image segmentation provides a region-oriented scale-space, i.e. a set of image segmentations at different detail levels in which the segmentations at finer levels are nested with respect to those at coarser levels. However, most image segmentation algorithms, among which a graph-based image segmentation method relying on a region merging criterion was proposed by Felzenszwalb–Huttenlocher in 2004, do not lead to a hierarchy. In order to cope with a demand for hierarchical segmentation, Guimarães et al. proposed in 2012 a method for hierarchizing the popular Felzenszwalb–Huttenlocher method, without providing an algorithm to compute the proposed hierarchy. This paper is devoted to providing a series of algorithms to compute the result of this hierarchical graph-based image segmentation method efficiently, based mainly on two ideas: optimal dissimilarity measuring and incremental update of the hierarchical structure. Experiments show that, for an image of size 321 × 481 pixels, the most efficient algorithm produces the result in half a second whereas the most naive one requires more than 4 h.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.4481325
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).