Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity
Descripción del Articulo
The research leading to these results has received funding from the French Agence Nationale de la Recherche, grant agreement ANR-15-CE40-0006 (CoMeDiC), the Brazilian Federal Agency of Support and Evaluation of Postgraduate Education (program CAPES/PVE: grant 064965/2014-01), the Peruvian agency Con...
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2018 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/1338 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/1338 https://doi.org/10.1142/s0218001419400081 |
Nivel de acceso: | acceso abierto |
Materia: | quasi-flat zone Image segmentation hierarchical analysis incremental algorithm https://purl.org/pe-repo/ocde/ford#2.02.03 |
id |
CONC_d0dd09f7ed21c7bb92602f8341407d7e |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/1338 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity |
title |
Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity |
spellingShingle |
Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity Cahuina, Edward Cayllahua quasi-flat zone Image segmentation hierarchical analysis incremental algorithm https://purl.org/pe-repo/ocde/ford#2.02.03 |
title_short |
Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity |
title_full |
Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity |
title_fullStr |
Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity |
title_full_unstemmed |
Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity |
title_sort |
Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity |
author |
Cahuina, Edward Cayllahua |
author_facet |
Cahuina, Edward Cayllahua Cousty, Jean Kenmochi, Yukiko de Albuquerque Araújo, Arnaldo Cámara-Chávez, Guillermo Guimarães, Silvio Jamil F. |
author_role |
author |
author2 |
Cousty, Jean Kenmochi, Yukiko de Albuquerque Araújo, Arnaldo Cámara-Chávez, Guillermo Guimarães, Silvio Jamil F. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Cahuina, Edward Cayllahua Cousty, Jean Kenmochi, Yukiko de Albuquerque Araújo, Arnaldo Cámara-Chávez, Guillermo Guimarães, Silvio Jamil F. |
dc.subject.none.fl_str_mv |
quasi-flat zone |
topic |
quasi-flat zone Image segmentation hierarchical analysis incremental algorithm https://purl.org/pe-repo/ocde/ford#2.02.03 |
dc.subject.es_PE.fl_str_mv |
Image segmentation hierarchical analysis incremental algorithm |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.03 |
description |
The research leading to these results has received funding from the French Agence Nationale de la Recherche, grant agreement ANR-15-CE40-0006 (CoMeDiC), the Brazilian Federal Agency of Support and Evaluation of Postgraduate Education (program CAPES/PVE: grant 064965/2014-01), the Peruvian agency Consejo Na-cional de Ciencia, Tecnolog´ıa e Innovaci´on Tecnol´ogica CONCYTEC (contract N-101-2016-. FONDECYT-DE). The first author would like to thank Brazilian agencies CNPq and CAPES and Peruvian agency CONCYTEC for the financial support during his thesis. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2018-12-27 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/1338 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1142/s0218001419400081 |
url |
https://hdl.handle.net/20.500.12390/1338 https://doi.org/10.1142/s0218001419400081 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
International Journal of Pattern Recognition and Artificial Intelligence |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
World Scientific Pub Co Pte Lt |
publisher.none.fl_str_mv |
World Scientific Pub Co Pte Lt |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175753631006720 |
spelling |
Publicationrp03942600rp03940600rp03941600rp03937600rp03939600rp03938600Cahuina, Edward CayllahuaCousty, JeanKenmochi, Yukikode Albuquerque Araújo, ArnaldoCámara-Chávez, GuillermoGuimarães, Silvio Jamil F.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2018-12-27https://hdl.handle.net/20.500.12390/1338https://doi.org/10.1142/s0218001419400081The research leading to these results has received funding from the French Agence Nationale de la Recherche, grant agreement ANR-15-CE40-0006 (CoMeDiC), the Brazilian Federal Agency of Support and Evaluation of Postgraduate Education (program CAPES/PVE: grant 064965/2014-01), the Peruvian agency Consejo Na-cional de Ciencia, Tecnolog´ıa e Innovaci´on Tecnol´ogica CONCYTEC (contract N-101-2016-. FONDECYT-DE). The first author would like to thank Brazilian agencies CNPq and CAPES and Peruvian agency CONCYTEC for the financial support during his thesis.Hierarchical image segmentation provides a region-oriented scale-space, i.e. a set of image segmentations at different detail levels in which the segmentations at finer levels are nested with respect to those at coarser levels. However, most image segmentation algorithms, among which a graph-based image segmentation method relying on a region merging criterion was proposed by Felzenszwalb–Huttenlocher in 2004, do not lead to a hierarchy. In order to cope with a demand for hierarchical segmentation, Guimarães et al. proposed in 2012 a method for hierarchizing the popular Felzenszwalb–Huttenlocher method, without providing an algorithm to compute the proposed hierarchy. This paper is devoted to providing a series of algorithms to compute the result of this hierarchical graph-based image segmentation method efficiently, based mainly on two ideas: optimal dissimilarity measuring and incremental update of the hierarchical structure. Experiments show that, for an image of size 321 × 481 pixels, the most efficient algorithm produces the result in half a second whereas the most naive one requires more than 4 h.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengWorld Scientific Pub Co Pte LtInternational Journal of Pattern Recognition and Artificial Intelligenceinfo:eu-repo/semantics/openAccessquasi-flat zoneImage segmentation-1hierarchical analysis-1incremental algorithm-1https://purl.org/pe-repo/ocde/ford#2.02.03-1Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarityinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/1338oai:repositorio.concytec.gob.pe:20.500.12390/13382024-05-30 15:24:02.036http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="cd9772aa-d162-4bc7-80cf-5e9aa766bd68"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Efficient Algorithms for Hierarchical Graph-Based Segmentation Relying on the Felzenszwalb–Huttenlocher Dissimilarity</Title> <PublishedIn> <Publication> <Title>International Journal of Pattern Recognition and Artificial Intelligence</Title> </Publication> </PublishedIn> <PublicationDate>2018-12-27</PublicationDate> <DOI>https://doi.org/10.1142/s0218001419400081</DOI> <Authors> <Author> <DisplayName>Cahuina, Edward Cayllahua</DisplayName> <Person id="rp03942" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cousty, Jean</DisplayName> <Person id="rp03940" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Kenmochi, Yukiko</DisplayName> <Person id="rp03941" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>de Albuquerque Araújo, Arnaldo</DisplayName> <Person id="rp03937" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cámara-Chávez, Guillermo</DisplayName> <Person id="rp03939" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Guimarães, Silvio Jamil F.</DisplayName> <Person id="rp03938" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>World Scientific Pub Co Pte Lt</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>quasi-flat zone</Keyword> <Keyword>Image segmentation</Keyword> <Keyword>hierarchical analysis</Keyword> <Keyword>incremental algorithm</Keyword> <Abstract>Hierarchical image segmentation provides a region-oriented scale-space, i.e. a set of image segmentations at different detail levels in which the segmentations at finer levels are nested with respect to those at coarser levels. However, most image segmentation algorithms, among which a graph-based image segmentation method relying on a region merging criterion was proposed by Felzenszwalb–Huttenlocher in 2004, do not lead to a hierarchy. In order to cope with a demand for hierarchical segmentation, Guimarães et al. proposed in 2012 a method for hierarchizing the popular Felzenszwalb–Huttenlocher method, without providing an algorithm to compute the proposed hierarchy. This paper is devoted to providing a series of algorithms to compute the result of this hierarchical graph-based image segmentation method efficiently, based mainly on two ideas: optimal dissimilarity measuring and incremental update of the hierarchical structure. Experiments show that, for an image of size 321 × 481 pixels, the most efficient algorithm produces the result in half a second whereas the most naive one requires more than 4 h.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.4481325 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).