F-expansivity for Borel measures
Descripción del Articulo
We introduce the notion of F-expansive measure by making the dynamical ball in [4] to depend on a given subset F of the set of all the reparametrizations H. We prove that these measures satisfy some interesting properties resembling the expansive ones. These include the equivalence with expansivity...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2016 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2791 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2791 https://doi.org/10.1016/j.jde.2016.08.004 |
Nivel de acceso: | acceso abierto |
Materia: | Support of a measure Expansive flow Expansive measure Metric space http://purl.org/pe-repo/ocde/ford#1.01.01 |
id |
CONC_ca9cd313e1bc3d819efef979ee7c0590 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2791 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
spelling |
Publicationrp07457600Villavicencio Fernández H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016https://hdl.handle.net/20.500.12390/2791https://doi.org/10.1016/j.jde.2016.08.0042-s2.0-84992077653We introduce the notion of F-expansive measure by making the dynamical ball in [4] to depend on a given subset F of the set of all the reparametrizations H. We prove that these measures satisfy some interesting properties resembling the expansive ones. These include the equivalence with expansivity when F=H, the vanishing along the orbits, the absence of singularities in the support, the F-expansivity with respect to time t-maps, the invariance under equivalence and the characterization for suspensions. We also analyze the support of the F-expansive measures and prove that there exists a dense subset of measures (in the set of F-expansive measures) all of them with a common support. Finally, we extend to flows the recent result for homeomorphisms in [11]. © 2016 Elsevier Inc.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengAcademic Press Inc.Journal of Differential Equationsinfo:eu-repo/semantics/openAccessSupport of a measureExpansive flow-1Expansive measure-1Metric space-1http://purl.org/pe-repo/ocde/ford#1.01.01-1F-expansivity for Borel measuresinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2791oai:repositorio.concytec.gob.pe:20.500.12390/27912024-05-30 15:25:37.35http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="b1604549-2185-48d1-bcc9-bc24fcf5c200"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>F-expansivity for Borel measures</Title> <PublishedIn> <Publication> <Title>Journal of Differential Equations</Title> </Publication> </PublishedIn> <PublicationDate>2016</PublicationDate> <DOI>https://doi.org/10.1016/j.jde.2016.08.004</DOI> <SCP-Number>2-s2.0-84992077653</SCP-Number> <Authors> <Author> <DisplayName>Villavicencio Fernández H.</DisplayName> <Person id="rp07457" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Academic Press Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Support of a measure</Keyword> <Keyword>Expansive flow</Keyword> <Keyword>Expansive measure</Keyword> <Keyword>Metric space</Keyword> <Abstract>We introduce the notion of F-expansive measure by making the dynamical ball in [4] to depend on a given subset F of the set of all the reparametrizations H. We prove that these measures satisfy some interesting properties resembling the expansive ones. These include the equivalence with expansivity when F=H, the vanishing along the orbits, the absence of singularities in the support, the F-expansivity with respect to time t-maps, the invariance under equivalence and the characterization for suspensions. We also analyze the support of the F-expansive measures and prove that there exists a dense subset of measures (in the set of F-expansive measures) all of them with a common support. Finally, we extend to flows the recent result for homeomorphisms in [11]. © 2016 Elsevier Inc.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
dc.title.none.fl_str_mv |
F-expansivity for Borel measures |
title |
F-expansivity for Borel measures |
spellingShingle |
F-expansivity for Borel measures Villavicencio Fernández H. Support of a measure Expansive flow Expansive measure Metric space http://purl.org/pe-repo/ocde/ford#1.01.01 |
title_short |
F-expansivity for Borel measures |
title_full |
F-expansivity for Borel measures |
title_fullStr |
F-expansivity for Borel measures |
title_full_unstemmed |
F-expansivity for Borel measures |
title_sort |
F-expansivity for Borel measures |
author |
Villavicencio Fernández H. |
author_facet |
Villavicencio Fernández H. |
author_role |
author |
dc.contributor.author.fl_str_mv |
Villavicencio Fernández H. |
dc.subject.none.fl_str_mv |
Support of a measure |
topic |
Support of a measure Expansive flow Expansive measure Metric space http://purl.org/pe-repo/ocde/ford#1.01.01 |
dc.subject.es_PE.fl_str_mv |
Expansive flow Expansive measure Metric space |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.01 |
description |
We introduce the notion of F-expansive measure by making the dynamical ball in [4] to depend on a given subset F of the set of all the reparametrizations H. We prove that these measures satisfy some interesting properties resembling the expansive ones. These include the equivalence with expansivity when F=H, the vanishing along the orbits, the absence of singularities in the support, the F-expansivity with respect to time t-maps, the invariance under equivalence and the characterization for suspensions. We also analyze the support of the F-expansive measures and prove that there exists a dense subset of measures (in the set of F-expansive measures) all of them with a common support. Finally, we extend to flows the recent result for homeomorphisms in [11]. © 2016 Elsevier Inc. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2791 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.jde.2016.08.004 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-84992077653 |
url |
https://hdl.handle.net/20.500.12390/2791 https://doi.org/10.1016/j.jde.2016.08.004 |
identifier_str_mv |
2-s2.0-84992077653 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Journal of Differential Equations |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Academic Press Inc. |
publisher.none.fl_str_mv |
Academic Press Inc. |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175704596447232 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).