F-expansivity for Borel measures

Descripción del Articulo

We introduce the notion of F-expansive measure by making the dynamical ball in [4] to depend on a given subset F of the set of all the reparametrizations H. We prove that these measures satisfy some interesting properties resembling the expansive ones. These include the equivalence with expansivity...

Descripción completa

Detalles Bibliográficos
Autor: Villavicencio Fernández H.
Formato: artículo
Fecha de Publicación:2016
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2791
Enlace del recurso:https://hdl.handle.net/20.500.12390/2791
https://doi.org/10.1016/j.jde.2016.08.004
Nivel de acceso:acceso abierto
Materia:Support of a measure
Expansive flow
Expansive measure
Metric space
http://purl.org/pe-repo/ocde/ford#1.01.01
id CONC_ca9cd313e1bc3d819efef979ee7c0590
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2791
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp07457600Villavicencio Fernández H.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016https://hdl.handle.net/20.500.12390/2791https://doi.org/10.1016/j.jde.2016.08.0042-s2.0-84992077653We introduce the notion of F-expansive measure by making the dynamical ball in [4] to depend on a given subset F of the set of all the reparametrizations H. We prove that these measures satisfy some interesting properties resembling the expansive ones. These include the equivalence with expansivity when F=H, the vanishing along the orbits, the absence of singularities in the support, the F-expansivity with respect to time t-maps, the invariance under equivalence and the characterization for suspensions. We also analyze the support of the F-expansive measures and prove that there exists a dense subset of measures (in the set of F-expansive measures) all of them with a common support. Finally, we extend to flows the recent result for homeomorphisms in [11]. © 2016 Elsevier Inc.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengAcademic Press Inc.Journal of Differential Equationsinfo:eu-repo/semantics/openAccessSupport of a measureExpansive flow-1Expansive measure-1Metric space-1http://purl.org/pe-repo/ocde/ford#1.01.01-1F-expansivity for Borel measuresinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#20.500.12390/2791oai:repositorio.concytec.gob.pe:20.500.12390/27912024-05-30 15:25:37.35http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="b1604549-2185-48d1-bcc9-bc24fcf5c200"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>F-expansivity for Borel measures</Title> <PublishedIn> <Publication> <Title>Journal of Differential Equations</Title> </Publication> </PublishedIn> <PublicationDate>2016</PublicationDate> <DOI>https://doi.org/10.1016/j.jde.2016.08.004</DOI> <SCP-Number>2-s2.0-84992077653</SCP-Number> <Authors> <Author> <DisplayName>Villavicencio Fernández H.</DisplayName> <Person id="rp07457" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Academic Press Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Support of a measure</Keyword> <Keyword>Expansive flow</Keyword> <Keyword>Expansive measure</Keyword> <Keyword>Metric space</Keyword> <Abstract>We introduce the notion of F-expansive measure by making the dynamical ball in [4] to depend on a given subset F of the set of all the reparametrizations H. We prove that these measures satisfy some interesting properties resembling the expansive ones. These include the equivalence with expansivity when F=H, the vanishing along the orbits, the absence of singularities in the support, the F-expansivity with respect to time t-maps, the invariance under equivalence and the characterization for suspensions. We also analyze the support of the F-expansive measures and prove that there exists a dense subset of measures (in the set of F-expansive measures) all of them with a common support. Finally, we extend to flows the recent result for homeomorphisms in [11]. © 2016 Elsevier Inc.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv F-expansivity for Borel measures
title F-expansivity for Borel measures
spellingShingle F-expansivity for Borel measures
Villavicencio Fernández H.
Support of a measure
Expansive flow
Expansive measure
Metric space
http://purl.org/pe-repo/ocde/ford#1.01.01
title_short F-expansivity for Borel measures
title_full F-expansivity for Borel measures
title_fullStr F-expansivity for Borel measures
title_full_unstemmed F-expansivity for Borel measures
title_sort F-expansivity for Borel measures
author Villavicencio Fernández H.
author_facet Villavicencio Fernández H.
author_role author
dc.contributor.author.fl_str_mv Villavicencio Fernández H.
dc.subject.none.fl_str_mv Support of a measure
topic Support of a measure
Expansive flow
Expansive measure
Metric space
http://purl.org/pe-repo/ocde/ford#1.01.01
dc.subject.es_PE.fl_str_mv Expansive flow
Expansive measure
Metric space
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.01
description We introduce the notion of F-expansive measure by making the dynamical ball in [4] to depend on a given subset F of the set of all the reparametrizations H. We prove that these measures satisfy some interesting properties resembling the expansive ones. These include the equivalence with expansivity when F=H, the vanishing along the orbits, the absence of singularities in the support, the F-expansivity with respect to time t-maps, the invariance under equivalence and the characterization for suspensions. We also analyze the support of the F-expansive measures and prove that there exists a dense subset of measures (in the set of F-expansive measures) all of them with a common support. Finally, we extend to flows the recent result for homeomorphisms in [11]. © 2016 Elsevier Inc.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2791
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.jde.2016.08.004
dc.identifier.scopus.none.fl_str_mv 2-s2.0-84992077653
url https://hdl.handle.net/20.500.12390/2791
https://doi.org/10.1016/j.jde.2016.08.004
identifier_str_mv 2-s2.0-84992077653
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Journal of Differential Equations
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Academic Press Inc.
publisher.none.fl_str_mv Academic Press Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175704596447232
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).