FP-AK-QIEAR-R in protein folding application

Descripción del Articulo

There are many Evolutionary Algorithms which main features are: population, evolutionary operations (crossover, mate, mutation and others). Most of them are based on randomness and follow a criteria using fitness like selector. The proposal uses probability density function according to best of init...

Descripción completa

Detalles Bibliográficos
Autores: Saire, JEC, Tupac, Y
Formato: objeto de conferencia
Fecha de Publicación:2016
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/1076
Enlace del recurso:https://hdl.handle.net/20.500.12390/1076
https://doi.org/10.1109/LA-CCI.2016.7885726
Nivel de acceso:acceso abierto
Materia:Herencia
Genética
Algoritmo
https://purl.org/pe-repo/ocde/ford#1.06.07
id CONC_c635119157c378be9fccf8a162ec4367
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/1076
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
spelling Publicationrp03045600rp03046600Saire, JECTupac, Y2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016https://hdl.handle.net/20.500.12390/1076https://doi.org/10.1109/LA-CCI.2016.7885726402174700032There are many Evolutionary Algorithms which main features are: population, evolutionary operations (crossover, mate, mutation and others). Most of them are based on randomness and follow a criteria using fitness like selector. The proposal uses probability density function according to best of initial population to sample new population and save better individuals iteratively. Then using centroid criteria sample for every dimension and get better individuals. It had good results with benchmark functions. A real application was performed with experiments in protein folding and it showed good results.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers (IEEE)info:eu-repo/semantics/openAccessHerenciaGenética-1Algoritmo-1https://purl.org/pe-repo/ocde/ford#1.06.07-1FP-AK-QIEAR-R in protein folding applicationinfo:eu-repo/semantics/conferenceObjectreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/1076oai:repositorio.concytec.gob.pe:20.500.12390/10762024-05-30 16:00:59.856http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="f71d5c04-a0f8-4f90-a6a3-2a07b6fe3df2"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>FP-AK-QIEAR-R in protein folding application</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2016</PublicationDate> <DOI>https://doi.org/10.1109/LA-CCI.2016.7885726</DOI> <ISI-Number>402174700032</ISI-Number> <Authors> <Author> <DisplayName>Saire, JEC</DisplayName> <Person id="rp03045" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Tupac, Y</DisplayName> <Person id="rp03046" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers (IEEE)</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Herencia</Keyword> <Keyword>Genética</Keyword> <Keyword>Algoritmo</Keyword> <Abstract>There are many Evolutionary Algorithms which main features are: population, evolutionary operations (crossover, mate, mutation and others). Most of them are based on randomness and follow a criteria using fitness like selector. The proposal uses probability density function according to best of initial population to sample new population and save better individuals iteratively. Then using centroid criteria sample for every dimension and get better individuals. It had good results with benchmark functions. A real application was performed with experiments in protein folding and it showed good results.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
dc.title.none.fl_str_mv FP-AK-QIEAR-R in protein folding application
title FP-AK-QIEAR-R in protein folding application
spellingShingle FP-AK-QIEAR-R in protein folding application
Saire, JEC
Herencia
Genética
Algoritmo
https://purl.org/pe-repo/ocde/ford#1.06.07
title_short FP-AK-QIEAR-R in protein folding application
title_full FP-AK-QIEAR-R in protein folding application
title_fullStr FP-AK-QIEAR-R in protein folding application
title_full_unstemmed FP-AK-QIEAR-R in protein folding application
title_sort FP-AK-QIEAR-R in protein folding application
author Saire, JEC
author_facet Saire, JEC
Tupac, Y
author_role author
author2 Tupac, Y
author2_role author
dc.contributor.author.fl_str_mv Saire, JEC
Tupac, Y
dc.subject.none.fl_str_mv Herencia
topic Herencia
Genética
Algoritmo
https://purl.org/pe-repo/ocde/ford#1.06.07
dc.subject.es_PE.fl_str_mv Genética
Algoritmo
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.06.07
description There are many Evolutionary Algorithms which main features are: population, evolutionary operations (crossover, mate, mutation and others). Most of them are based on randomness and follow a criteria using fitness like selector. The proposal uses probability density function according to best of initial population to sample new population and save better individuals iteratively. Then using centroid criteria sample for every dimension and get better individuals. It had good results with benchmark functions. A real application was performed with experiments in protein folding and it showed good results.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/1076
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/LA-CCI.2016.7885726
dc.identifier.isi.none.fl_str_mv 402174700032
url https://hdl.handle.net/20.500.12390/1076
https://doi.org/10.1109/LA-CCI.2016.7885726
identifier_str_mv 402174700032
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers (IEEE)
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers (IEEE)
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1844883130797785088
score 13.381484
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).