Reconocimiento de patrones mediante redes complejas
Descripción del Articulo
La detección de patrones no es una tarea trivial, especialmente cuando se tienen datos heterogéneos aún dentro de un dominio específico. En la literatura existe una diversidad de técnicas para la detección y reconocimiento de patrones, es así que en los últimos años se ha tomado un especial interés...
| Autor: | |
|---|---|
| Formato: | tesis doctoral |
| Fecha de Publicación: | 2013 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/337 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/337 |
| Nivel de acceso: | acceso abierto |
| Materia: | Reconocimiento de patrones Procesamiento de imágenes https://purl.org/pe-repo/ocde/ford#1.02.01 |
| id |
CONC_c538a064016bd77e50f87dd21373c407 |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/337 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
Reconocimiento de patrones mediante redes complejas |
| title |
Reconocimiento de patrones mediante redes complejas |
| spellingShingle |
Reconocimiento de patrones mediante redes complejas Gutiérrez Cáceres, Juan Carlos Reconocimiento de patrones Procesamiento de imágenes https://purl.org/pe-repo/ocde/ford#1.02.01 |
| title_short |
Reconocimiento de patrones mediante redes complejas |
| title_full |
Reconocimiento de patrones mediante redes complejas |
| title_fullStr |
Reconocimiento de patrones mediante redes complejas |
| title_full_unstemmed |
Reconocimiento de patrones mediante redes complejas |
| title_sort |
Reconocimiento de patrones mediante redes complejas |
| author |
Gutiérrez Cáceres, Juan Carlos |
| author_facet |
Gutiérrez Cáceres, Juan Carlos |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Gutiérrez Cáceres, Juan Carlos |
| dc.subject.none.fl_str_mv |
Reconocimiento de patrones |
| topic |
Reconocimiento de patrones Procesamiento de imágenes https://purl.org/pe-repo/ocde/ford#1.02.01 |
| dc.subject.es_PE.fl_str_mv |
Procesamiento de imágenes |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
| description |
La detección de patrones no es una tarea trivial, especialmente cuando se tienen datos heterogéneos aún dentro de un dominio específico. En la literatura existe una diversidad de técnicas para la detección y reconocimiento de patrones, es así que en los últimos años se ha tomado un especial interés en la técnica de redes complejas, las cuales son representadas como grafos con gran cantidad de nodos y patrones de conexión no triviales. Sin embargo, no se conoce el potencial de esta estrategia, ni su aplicación a diversos problemas de reconocimiento de patrones, especialmente si tendrá un comportamiento óptimo para ciertos dominios. En ese sentido, el presente trabajo propone un modelo basado en redes complejas para el reconocimiento de patrones, el cual ha sido aplicado exitosamente para el reconocimiento de series temporales y de imágenes digitales. El modelo propuesto lleva a una representación de grafo mediante un algoritmo de transformación, aplicado a series temporales, tomando en consideración el total de la información, lo cual la diferencia de otras técnicas que extraen sólo parte de la misma. Para el caso de imágenes, en la literatura se tiene antecedentes del uso separado de la representación de contorno y del contenido de los objetos en análisis. Nuestro trabajo propone una representación conjunta del contorno y el contenido. Como primer caso de estudio, se realizaron experimentos con un conjunto de secuencias de sonido de vocablos, con el objeto de desarrollar un reconocimiento de habla, siendo que nuestra propuesta consiguió reconocer el 99.44% los diferentes vocablos probados. Para el reconocimiento de patrones, se experimentó con imágenes de la base de datos de parásitos de Helmintos, siendo que el mismo está constituido por 11 especies diferentes con una base de datos de 1036 imágenes, donde nuestra propuesta consiguió el 98.74% de acierto. Estos resultados son muy superiores a los conseguidos por técnicas tradicionales, lo cual nos indica que el uso de redes complejas para el reconocimiento de patrones es una técnica muy promisoria, y con el presente trabajo se contribuye a enriquecer no solo la literatura en el área, sino en la solución de aplicaciones prácticas como las experimentadas. |
| publishDate |
2013 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2013 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/337 |
| url |
https://hdl.handle.net/20.500.12390/337 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
| dc.publisher.none.fl_str_mv |
Universidad Nacional de San Agustín |
| publisher.none.fl_str_mv |
Universidad Nacional de San Agustín |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.concytec.gob.pe/bitstreams/7642e732-71a4-43e1-399d-2b6ff8aa38a6/download https://repositorio.concytec.gob.pe/bitstreams/6fb64bcc-c0b7-2494-ead7-dda71cf0e158/download https://repositorio.concytec.gob.pe/bitstreams/f9ebb94b-b372-bbcf-2fb7-df2e5f9a66c3/download https://repositorio.concytec.gob.pe/bitstreams/6e1c67e4-ab5c-148c-9a14-9c2bd1d804af/download https://repositorio.concytec.gob.pe/bitstreams/83b90f6f-9473-40a5-9974-088b131878be/download |
| bitstream.checksum.fl_str_mv |
56df87a3a47c7af11d328201497a139d 4afdbb8c545fd630ea7db775da747b2f d687a98c118f25f8447b3f440f7b3dd3 8a4605be74aa9ea9d79846c1fba20a33 2b6aebc7a0a7c6c6ecc6c3ead0a2aec7 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883133513596928 |
| spelling |
Publicationrp00322600Gutiérrez Cáceres, Juan Carlos2024-05-30T23:13:38Z2024-05-30T23:13:38Z2013https://hdl.handle.net/20.500.12390/337La detección de patrones no es una tarea trivial, especialmente cuando se tienen datos heterogéneos aún dentro de un dominio específico. En la literatura existe una diversidad de técnicas para la detección y reconocimiento de patrones, es así que en los últimos años se ha tomado un especial interés en la técnica de redes complejas, las cuales son representadas como grafos con gran cantidad de nodos y patrones de conexión no triviales. Sin embargo, no se conoce el potencial de esta estrategia, ni su aplicación a diversos problemas de reconocimiento de patrones, especialmente si tendrá un comportamiento óptimo para ciertos dominios. En ese sentido, el presente trabajo propone un modelo basado en redes complejas para el reconocimiento de patrones, el cual ha sido aplicado exitosamente para el reconocimiento de series temporales y de imágenes digitales. El modelo propuesto lleva a una representación de grafo mediante un algoritmo de transformación, aplicado a series temporales, tomando en consideración el total de la información, lo cual la diferencia de otras técnicas que extraen sólo parte de la misma. Para el caso de imágenes, en la literatura se tiene antecedentes del uso separado de la representación de contorno y del contenido de los objetos en análisis. Nuestro trabajo propone una representación conjunta del contorno y el contenido. Como primer caso de estudio, se realizaron experimentos con un conjunto de secuencias de sonido de vocablos, con el objeto de desarrollar un reconocimiento de habla, siendo que nuestra propuesta consiguió reconocer el 99.44% los diferentes vocablos probados. Para el reconocimiento de patrones, se experimentó con imágenes de la base de datos de parásitos de Helmintos, siendo que el mismo está constituido por 11 especies diferentes con una base de datos de 1036 imágenes, donde nuestra propuesta consiguió el 98.74% de acierto. Estos resultados son muy superiores a los conseguidos por técnicas tradicionales, lo cual nos indica que el uso de redes complejas para el reconocimiento de patrones es una técnica muy promisoria, y con el presente trabajo se contribuye a enriquecer no solo la literatura en el área, sino en la solución de aplicaciones prácticas como las experimentadas.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytspaUniversidad Nacional de San Agustíninfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Reconocimiento de patronesProcesamiento de imágenes-1https://purl.org/pe-repo/ocde/ford#1.02.01-1Reconocimiento de patrones mediante redes complejasinfo:eu-repo/semantics/doctoralThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#ORIGINALgutierrez_cj.pdfgutierrez_cj.pdfapplication/pdf7169126https://repositorio.concytec.gob.pe/bitstreams/7642e732-71a4-43e1-399d-2b6ff8aa38a6/download56df87a3a47c7af11d328201497a139dMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.concytec.gob.pe/bitstreams/6fb64bcc-c0b7-2494-ead7-dda71cf0e158/download4afdbb8c545fd630ea7db775da747b2fMD52THUMBNAILgutierrez_cj.pdf.jpggutierrez_cj.pdf.jpgIM Thumbnailimage/jpeg7329https://repositorio.concytec.gob.pe/bitstreams/f9ebb94b-b372-bbcf-2fb7-df2e5f9a66c3/downloadd687a98c118f25f8447b3f440f7b3dd3MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.concytec.gob.pe/bitstreams/6e1c67e4-ab5c-148c-9a14-9c2bd1d804af/download8a4605be74aa9ea9d79846c1fba20a33MD55TEXTgutierrez_cj.pdf.txtgutierrez_cj.pdf.txtExtracted texttext/plain181429https://repositorio.concytec.gob.pe/bitstreams/83b90f6f-9473-40a5-9974-088b131878be/download2b6aebc7a0a7c6c6ecc6c3ead0a2aec7MD5720.500.12390/337oai:repositorio.concytec.gob.pe:20.500.12390/3372024-06-10 15:19:50.902http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="ff4fdb20-2a63-49ff-9ad5-4b43e0773075"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>spa</Language> <Title>Reconocimiento de patrones mediante redes complejas</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2013</PublicationDate> <Authors> <Author> <DisplayName>Gutiérrez Cáceres, Juan Carlos</DisplayName> <Person id="rp00322" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Universidad Nacional de San Agustín</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc/4.0/</License> <Keyword>Reconocimiento de patrones</Keyword> <Keyword>Procesamiento de imágenes</Keyword> <Abstract>La detección de patrones no es una tarea trivial, especialmente cuando se tienen datos heterogéneos aún dentro de un dominio específico. En la literatura existe una diversidad de técnicas para la detección y reconocimiento de patrones, es así que en los últimos años se ha tomado un especial interés en la técnica de redes complejas, las cuales son representadas como grafos con gran cantidad de nodos y patrones de conexión no triviales. Sin embargo, no se conoce el potencial de esta estrategia, ni su aplicación a diversos problemas de reconocimiento de patrones, especialmente si tendrá un comportamiento óptimo para ciertos dominios. En ese sentido, el presente trabajo propone un modelo basado en redes complejas para el reconocimiento de patrones, el cual ha sido aplicado exitosamente para el reconocimiento de series temporales y de imágenes digitales. El modelo propuesto lleva a una representación de grafo mediante un algoritmo de transformación, aplicado a series temporales, tomando en consideración el total de la información, lo cual la diferencia de otras técnicas que extraen sólo parte de la misma. Para el caso de imágenes, en la literatura se tiene antecedentes del uso separado de la representación de contorno y del contenido de los objetos en análisis. Nuestro trabajo propone una representación conjunta del contorno y el contenido. Como primer caso de estudio, se realizaron experimentos con un conjunto de secuencias de sonido de vocablos, con el objeto de desarrollar un reconocimiento de habla, siendo que nuestra propuesta consiguió reconocer el 99.44% los diferentes vocablos probados. Para el reconocimiento de patrones, se experimentó con imágenes de la base de datos de parásitos de Helmintos, siendo que el mismo está constituido por 11 especies diferentes con una base de datos de 1036 imágenes, donde nuestra propuesta consiguió el 98.74% de acierto. Estos resultados son muy superiores a los conseguidos por técnicas tradicionales, lo cual nos indica que el uso de redes complejas para el reconocimiento de patrones es una técnica muy promisoria, y con el presente trabajo se contribuye a enriquecer no solo la literatura en el área, sino en la solución de aplicaciones prácticas como las experimentadas.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.444865 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).