System identification models' fit using error histogram analysis and the Hampel filter as computational tools

Descripción del Articulo

In the present investigation, we use the error histogram analysis as a computational tool to define whether the model resulting from a system identification process should continue to be fitted, and the Hampel filter for the elimination of outliers as a tool that also avoids on model over-parameteri...

Descripción completa

Detalles Bibliográficos
Autores: Risco R., Perez D., Casaverde L.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2497
Enlace del recurso:https://hdl.handle.net/20.500.12390/2497
https://doi.org/10.1109/INTERCON50315.2020.9220230
Nivel de acceso:acceso abierto
Materia:Outliers
ARMAX
ARX
Hampel
Identification
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:In the present investigation, we use the error histogram analysis as a computational tool to define whether the model resulting from a system identification process should continue to be fitted, and the Hampel filter for the elimination of outliers as a tool that also avoids on model over-parameterization. To do this, we use three data sets from a four-cylinder BMW diesel engine, to identify a linear model, and then, with that model, analyze the error and its histogram in a data set (without noise, with noise and with outliers). The analysis of the histogram of the error was found to be a useful tool for detecting white noise and helps to avoid overfitting, in addition to the fact that the Hampel filter allowed detecting and eliminating atypical samples. The software used was MATLAB. © 2020 IEEE.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).