Exportación Completada — 

An Approach to Temporal Phase Classification on Videos of the Volleyball's Basic Reception Technique

Descripción del Articulo

In this paper we provide an approach on sports analysis using Deep learning techniques. As part of a current project, the volleyball's basic reception technique has been divided into temporal phases. We performed an evaluation over our own labelled dataset consisting in 14814 frames from 69 vid...

Descripción completa

Detalles Bibliográficos
Autores: Garcia J.G., Villota E.R., Castañon C.B.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2567
Enlace del recurso:https://hdl.handle.net/20.500.12390/2567
https://doi.org/10.1145/3388142.3388150
Nivel de acceso:acceso abierto
Materia:Volleyball
Activity Recognition
Computer Vision
Sport Analysis
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:In this paper we provide an approach on sports analysis using Deep learning techniques. As part of a current project, the volleyball's basic reception technique has been divided into temporal phases. We performed an evaluation over our own labelled dataset consisting in 14814 frames from 69 videos depicting the desired reception technique. A model based on the YOLO algorithm was trained to locate the player region and trim the frames. Two time fusion methods over the frames wereproposed and evaluated with CNN models which were created based on the ResNet models and a transfer learning approach was used to train them. The results show that these models were able of classifying the frames with their corresponding phase with an accuracy of 92.21% in our best model. Also it can be seen that the RGB merging method shown in this paper helps to slightly improve the performance of the models. Furthermore, the models were capable of learning the temporality of the phases as the mistakes done by the models occurred between consecutive phases. © 2020 ACM.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).