High performance implementation of MPC schemes for fast systems
Descripción del Articulo
In recent years, the number of applications of model predictive control (MPC) is rapidly increasing due to the better control performance that it provides in comparison to traditional control methods. However, the main limitation of MPC is the computational e ort required for the online solution of...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2016 |
| Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
| Repositorio: | CONCYTEC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/269 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12390/269 |
| Nivel de acceso: | acceso abierto |
| Materia: | Programación lineal https://purl.org/pe-repo/ocde/ford#2.02.00 |
| id |
CONC_baf8aba4479b98930e10b785115193aa |
|---|---|
| oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/269 |
| network_acronym_str |
CONC |
| network_name_str |
CONCYTEC-Institucional |
| repository_id_str |
4689 |
| dc.title.none.fl_str_mv |
High performance implementation of MPC schemes for fast systems |
| title |
High performance implementation of MPC schemes for fast systems |
| spellingShingle |
High performance implementation of MPC schemes for fast systems Correa Córdova, Max Leo Programación lineal https://purl.org/pe-repo/ocde/ford#2.02.00 |
| title_short |
High performance implementation of MPC schemes for fast systems |
| title_full |
High performance implementation of MPC schemes for fast systems |
| title_fullStr |
High performance implementation of MPC schemes for fast systems |
| title_full_unstemmed |
High performance implementation of MPC schemes for fast systems |
| title_sort |
High performance implementation of MPC schemes for fast systems |
| author |
Correa Córdova, Max Leo |
| author_facet |
Correa Córdova, Max Leo |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Correa Córdova, Max Leo |
| dc.subject.none.fl_str_mv |
Programación lineal |
| topic |
Programación lineal https://purl.org/pe-repo/ocde/ford#2.02.00 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.00 |
| description |
In recent years, the number of applications of model predictive control (MPC) is rapidly increasing due to the better control performance that it provides in comparison to traditional control methods. However, the main limitation of MPC is the computational e ort required for the online solution of an optimization problem. This shortcoming restricts the use of MPC for real-time control of dynamic systems with high sampling rates. This thesis aims to overcome this limitation by implementing high-performance MPC solvers for real-time control of fast systems. Hence, one of the objectives of this work is to take the advantage of the particular mathematical structures that MPC schemes exhibit and use parallel computing to improve the computational e ciency. Firstly, this thesis focuses on implementing e cient parallel solvers for linear MPC (LMPC) problems, which are described by block-structured quadratic programming (QP) problems. Speci cally, three parallel solvers are implemented: a primal-dual interior-point method with Schur-complement decomposition, a quasi-Newton method for solving the dual problem, and the operator splitting method based on the alternating direction method of multipliers (ADMM). The implementation of all these solvers is based on C++. The software package Eigen is used to implement the linear algebra operations. The Open Message Passing Interface (Open MPI) library is used for the communication between processors. Four case-studies are presented to demonstrate the potential of the implementation. Hence, the implemented solvers have shown high performance for tackling large-scale LMPC problems by providing the solutions in computation times below milliseconds. Secondly, the thesis addresses the solution of nonlinear MPC (NMPC) problems, which are described by general optimal control problems (OCPs). More precisely, implementations are done for the combined multiple-shooting and collocation (CMSC) method using a parallelization scheme. The CMSC method transforms the OCP into a nonlinear optimization problem (NLP) and de nes a set of underlying sub-problems for computing the sensitivities and discretized state values within the NLP solver. These underlying sub-problems are decoupled on the variables and thus, are solved in parallel. For the implementation, the software package IPOPT is used to solve the resulting NLP problems. The parallel solution of the sub-problems is performed based on MPI and Eigen. The computational performance of the parallel CMSC solver is tested using case studies for both OCPs and NMPC showing very promising results. Finally, applications to autonomous navigation for the SUMMIT robot are presented. Specially, reference tracking and obstacle avoidance problems are addressed using an NMPC approach. Both simulation and experimental results are presented and compared to a previous work on the SUMMIT, showing a much better computational e ciency and control performance. |
| publishDate |
2016 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
| dc.date.issued.fl_str_mv |
2016-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/269 |
| url |
https://hdl.handle.net/20.500.12390/269 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
| dc.publisher.none.fl_str_mv |
Technische Universitat ILMENAU |
| publisher.none.fl_str_mv |
Technische Universitat ILMENAU |
| dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
| instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
| instacron_str |
CONCYTEC |
| institution |
CONCYTEC |
| reponame_str |
CONCYTEC-Institucional |
| collection |
CONCYTEC-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.concytec.gob.pe/bitstreams/6fdcd095-4a09-b052-d48a-6db8ae8eb86f/download https://repositorio.concytec.gob.pe/bitstreams/1c7665e5-607a-350f-fb14-b7050566b076/download https://repositorio.concytec.gob.pe/bitstreams/80f63600-dd07-c887-3777-37b6ead61c76/download https://repositorio.concytec.gob.pe/bitstreams/ed8b4e00-9cd9-4a8f-a373-ddcb3cb5dad3/download |
| bitstream.checksum.fl_str_mv |
2e0cba151316e98986be77102976bd0f 8a4605be74aa9ea9d79846c1fba20a33 7d1ba4519766b977b924a2a0415e989f 554327fff57c0455b68664f25089cd4f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
| repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
| _version_ |
1844883027479494656 |
| spelling |
Publicationrp00233600Correa Córdova, Max Leo2024-05-30T23:13:38Z2024-05-30T23:13:38Z2016-03https://hdl.handle.net/20.500.12390/269In recent years, the number of applications of model predictive control (MPC) is rapidly increasing due to the better control performance that it provides in comparison to traditional control methods. However, the main limitation of MPC is the computational e ort required for the online solution of an optimization problem. This shortcoming restricts the use of MPC for real-time control of dynamic systems with high sampling rates. This thesis aims to overcome this limitation by implementing high-performance MPC solvers for real-time control of fast systems. Hence, one of the objectives of this work is to take the advantage of the particular mathematical structures that MPC schemes exhibit and use parallel computing to improve the computational e ciency. Firstly, this thesis focuses on implementing e cient parallel solvers for linear MPC (LMPC) problems, which are described by block-structured quadratic programming (QP) problems. Speci cally, three parallel solvers are implemented: a primal-dual interior-point method with Schur-complement decomposition, a quasi-Newton method for solving the dual problem, and the operator splitting method based on the alternating direction method of multipliers (ADMM). The implementation of all these solvers is based on C++. The software package Eigen is used to implement the linear algebra operations. The Open Message Passing Interface (Open MPI) library is used for the communication between processors. Four case-studies are presented to demonstrate the potential of the implementation. Hence, the implemented solvers have shown high performance for tackling large-scale LMPC problems by providing the solutions in computation times below milliseconds. Secondly, the thesis addresses the solution of nonlinear MPC (NMPC) problems, which are described by general optimal control problems (OCPs). More precisely, implementations are done for the combined multiple-shooting and collocation (CMSC) method using a parallelization scheme. The CMSC method transforms the OCP into a nonlinear optimization problem (NLP) and de nes a set of underlying sub-problems for computing the sensitivities and discretized state values within the NLP solver. These underlying sub-problems are decoupled on the variables and thus, are solved in parallel. For the implementation, the software package IPOPT is used to solve the resulting NLP problems. The parallel solution of the sub-problems is performed based on MPI and Eigen. The computational performance of the parallel CMSC solver is tested using case studies for both OCPs and NMPC showing very promising results. Finally, applications to autonomous navigation for the SUMMIT robot are presented. Specially, reference tracking and obstacle avoidance problems are addressed using an NMPC approach. Both simulation and experimental results are presented and compared to a previous work on the SUMMIT, showing a much better computational e ciency and control performance.Fondo Nacional de Desarrollo Científico y Tecnológico - FondecytengTechnische Universitat ILMENAUinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Programación linealhttps://purl.org/pe-repo/ocde/ford#2.02.00-1High performance implementation of MPC schemes for fast systemsinfo:eu-repo/semantics/masterThesisreponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC#PLACEHOLDER_PARENT_METADATA_VALUE#Magíster en Ingeniería de Control y AutomatizaciónIngeniería Eléctrica, Electrónica e informáticaPontificia Universidad Católica del Perú. Escuela de PostgradoORIGINAL2016_Correa_High-performance-implementation-of-MPC.pdf2016_Correa_High-performance-implementation-of-MPC.pdfapplication/pdf1444324https://repositorio.concytec.gob.pe/bitstreams/6fdcd095-4a09-b052-d48a-6db8ae8eb86f/download2e0cba151316e98986be77102976bd0fMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.concytec.gob.pe/bitstreams/1c7665e5-607a-350f-fb14-b7050566b076/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAIL2016_Correa_High-performance-implementation-of-MPC.pdf.jpg2016_Correa_High-performance-implementation-of-MPC.pdf.jpgIM Thumbnailimage/jpeg6447https://repositorio.concytec.gob.pe/bitstreams/80f63600-dd07-c887-3777-37b6ead61c76/download7d1ba4519766b977b924a2a0415e989fMD54TEXT2016_Correa_High-performance-implementation-of-MPC.pdf.txt2016_Correa_High-performance-implementation-of-MPC.pdf.txtExtracted texttext/plain348751https://repositorio.concytec.gob.pe/bitstreams/ed8b4e00-9cd9-4a8f-a373-ddcb3cb5dad3/download554327fff57c0455b68664f25089cd4fMD5520.500.12390/269oai:repositorio.concytec.gob.pe:20.500.12390/2692024-06-10 15:18:58.801http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessopen accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="c44f0d01-81bd-4ac7-b124-6407a6e95fa4"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>High performance implementation of MPC schemes for fast systems</Title> <PublishedIn> <Publication> </Publication> </PublishedIn> <PublicationDate>2016-03</PublicationDate> <Authors> <Author> <DisplayName>Correa Córdova, Max Leo</DisplayName> <Person id="rp00233" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Technische Universitat ILMENAU</DisplayName> <OrgUnit /> </Publisher> </Publishers> <License>http://creativecommons.org/licenses/by-nc/4.0/</License> <Keyword>Programación lineal</Keyword> <Abstract>In recent years, the number of applications of model predictive control (MPC) is rapidly increasing due to the better control performance that it provides in comparison to traditional control methods. However, the main limitation of MPC is the computational e ort required for the online solution of an optimization problem. This shortcoming restricts the use of MPC for real-time control of dynamic systems with high sampling rates. This thesis aims to overcome this limitation by implementing high-performance MPC solvers for real-time control of fast systems. Hence, one of the objectives of this work is to take the advantage of the particular mathematical structures that MPC schemes exhibit and use parallel computing to improve the computational e ciency. Firstly, this thesis focuses on implementing e cient parallel solvers for linear MPC (LMPC) problems, which are described by block-structured quadratic programming (QP) problems. Speci cally, three parallel solvers are implemented: a primal-dual interior-point method with Schur-complement decomposition, a quasi-Newton method for solving the dual problem, and the operator splitting method based on the alternating direction method of multipliers (ADMM). The implementation of all these solvers is based on C++. The software package Eigen is used to implement the linear algebra operations. The Open Message Passing Interface (Open MPI) library is used for the communication between processors. Four case-studies are presented to demonstrate the potential of the implementation. Hence, the implemented solvers have shown high performance for tackling large-scale LMPC problems by providing the solutions in computation times below milliseconds. Secondly, the thesis addresses the solution of nonlinear MPC (NMPC) problems, which are described by general optimal control problems (OCPs). More precisely, implementations are done for the combined multiple-shooting and collocation (CMSC) method using a parallelization scheme. The CMSC method transforms the OCP into a nonlinear optimization problem (NLP) and de nes a set of underlying sub-problems for computing the sensitivities and discretized state values within the NLP solver. These underlying sub-problems are decoupled on the variables and thus, are solved in parallel. For the implementation, the software package IPOPT is used to solve the resulting NLP problems. The parallel solution of the sub-problems is performed based on MPI and Eigen. The computational performance of the parallel CMSC solver is tested using case studies for both OCPs and NMPC showing very promising results. Finally, applications to autonomous navigation for the SUMMIT robot are presented. Specially, reference tracking and obstacle avoidance problems are addressed using an NMPC approach. Both simulation and experimental results are presented and compared to a previous work on the SUMMIT, showing a much better computational e ciency and control performance.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
| score |
13.957005 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).