Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity
Descripción del Articulo
Non-destructive determination of blueberry compound using spectral detection method is still a challenge due to the spectral THZ variation caused by abundant biological variations, such as geographic origins and harvest seasons. In order to investigate the potential of Terahertz time-domain spectros...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2469 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2469 https://doi.org/10.1109/EIRCON51178.2020.9254046 |
Nivel de acceso: | acceso abierto |
Materia: | Terahertz spectroscopy Blueberry Principal component Analysis http://purl.org/pe-repo/ocde/ford#4.01.01 |
id |
CONC_ba7be55b51fb3cd69958bf69c2f9871f |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2469 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity |
title |
Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity |
spellingShingle |
Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity Cruz J.O. Terahertz spectroscopy Blueberry Principal component Analysis http://purl.org/pe-repo/ocde/ford#4.01.01 |
title_short |
Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity |
title_full |
Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity |
title_fullStr |
Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity |
title_full_unstemmed |
Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity |
title_sort |
Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity |
author |
Cruz J.O. |
author_facet |
Cruz J.O. |
author_role |
author |
dc.contributor.author.fl_str_mv |
Cruz J.O. |
dc.subject.none.fl_str_mv |
Terahertz spectroscopy |
topic |
Terahertz spectroscopy Blueberry Principal component Analysis http://purl.org/pe-repo/ocde/ford#4.01.01 |
dc.subject.es_PE.fl_str_mv |
Blueberry Principal component Analysis |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#4.01.01 |
description |
Non-destructive determination of blueberry compound using spectral detection method is still a challenge due to the spectral THZ variation caused by abundant biological variations, such as geographic origins and harvest seasons. In order to investigate the potential of Terahertz time-domain spectroscopy to classify fruit maturity states, terahertz spectra (0.5-10 THz) of 4 states of blueberry maturity were examined. The acquired data matrices were submitted to the application of MATLAB 2019b Classification Learner by using 24 classifier models. 84.3 is the highest accuracy, obtained by the Fine Gaussian SVM Algorithm Model with a 0.35 Kernel Scale and a Multiclass Method One vs One. The coefficients for this application of PCA are PC1 (79.9%) and PC2 (20.1%). It was concluded that the combined processing and classification of images obtained from Terahertz time-domain spectroscopy and using Machine learning algorithms can be used to classify the different maturity states of blueberries. © 2020 IEEE. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2469 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/EIRCON51178.2020.9254046 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85097846605 |
url |
https://hdl.handle.net/20.500.12390/2469 https://doi.org/10.1109/EIRCON51178.2020.9254046 |
identifier_str_mv |
2-s2.0-85097846605 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175567293808640 |
spelling |
Publicationrp06265600Cruz J.O.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2469https://doi.org/10.1109/EIRCON51178.2020.92540462-s2.0-85097846605Non-destructive determination of blueberry compound using spectral detection method is still a challenge due to the spectral THZ variation caused by abundant biological variations, such as geographic origins and harvest seasons. In order to investigate the potential of Terahertz time-domain spectroscopy to classify fruit maturity states, terahertz spectra (0.5-10 THz) of 4 states of blueberry maturity were examined. The acquired data matrices were submitted to the application of MATLAB 2019b Classification Learner by using 24 classifier models. 84.3 is the highest accuracy, obtained by the Fine Gaussian SVM Algorithm Model with a 0.35 Kernel Scale and a Multiclass Method One vs One. The coefficients for this application of PCA are PC1 (79.9%) and PC2 (20.1%). It was concluded that the combined processing and classification of images obtained from Terahertz time-domain spectroscopy and using Machine learning algorithms can be used to classify the different maturity states of blueberries. © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020info:eu-repo/semantics/openAccessTerahertz spectroscopyBlueberry-1Principal component Analysis-1http://purl.org/pe-repo/ocde/ford#4.01.01-1Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturityinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2469oai:repositorio.concytec.gob.pe:20.500.12390/24692024-05-30 16:08:30.329http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="63328e70-68e7-486a-b68e-af66f4bdb112"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/EIRCON51178.2020.9254046</DOI> <SCP-Number>2-s2.0-85097846605</SCP-Number> <Authors> <Author> <DisplayName>Cruz J.O.</DisplayName> <Person id="rp06265" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Terahertz spectroscopy</Keyword> <Keyword>Blueberry</Keyword> <Keyword>Principal component Analysis</Keyword> <Abstract>Non-destructive determination of blueberry compound using spectral detection method is still a challenge due to the spectral THZ variation caused by abundant biological variations, such as geographic origins and harvest seasons. In order to investigate the potential of Terahertz time-domain spectroscopy to classify fruit maturity states, terahertz spectra (0.5-10 THz) of 4 states of blueberry maturity were examined. The acquired data matrices were submitted to the application of MATLAB 2019b Classification Learner by using 24 classifier models. 84.3 is the highest accuracy, obtained by the Fine Gaussian SVM Algorithm Model with a 0.35 Kernel Scale and a Multiclass Method One vs One. The coefficients for this application of PCA are PC1 (79.9%) and PC2 (20.1%). It was concluded that the combined processing and classification of images obtained from Terahertz time-domain spectroscopy and using Machine learning algorithms can be used to classify the different maturity states of blueberries. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.448654 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).