Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity

Descripción del Articulo

Non-destructive determination of blueberry compound using spectral detection method is still a challenge due to the spectral THZ variation caused by abundant biological variations, such as geographic origins and harvest seasons. In order to investigate the potential of Terahertz time-domain spectros...

Descripción completa

Detalles Bibliográficos
Autor: Cruz J.O.
Formato: artículo
Fecha de Publicación:2020
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2469
Enlace del recurso:https://hdl.handle.net/20.500.12390/2469
https://doi.org/10.1109/EIRCON51178.2020.9254046
Nivel de acceso:acceso abierto
Materia:Terahertz spectroscopy
Blueberry
Principal component Analysis
http://purl.org/pe-repo/ocde/ford#4.01.01
id CONC_ba7be55b51fb3cd69958bf69c2f9871f
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2469
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity
title Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity
spellingShingle Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity
Cruz J.O.
Terahertz spectroscopy
Blueberry
Principal component Analysis
http://purl.org/pe-repo/ocde/ford#4.01.01
title_short Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity
title_full Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity
title_fullStr Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity
title_full_unstemmed Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity
title_sort Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity
author Cruz J.O.
author_facet Cruz J.O.
author_role author
dc.contributor.author.fl_str_mv Cruz J.O.
dc.subject.none.fl_str_mv Terahertz spectroscopy
topic Terahertz spectroscopy
Blueberry
Principal component Analysis
http://purl.org/pe-repo/ocde/ford#4.01.01
dc.subject.es_PE.fl_str_mv Blueberry
Principal component Analysis
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#4.01.01
description Non-destructive determination of blueberry compound using spectral detection method is still a challenge due to the spectral THZ variation caused by abundant biological variations, such as geographic origins and harvest seasons. In order to investigate the potential of Terahertz time-domain spectroscopy to classify fruit maturity states, terahertz spectra (0.5-10 THz) of 4 states of blueberry maturity were examined. The acquired data matrices were submitted to the application of MATLAB 2019b Classification Learner by using 24 classifier models. 84.3 is the highest accuracy, obtained by the Fine Gaussian SVM Algorithm Model with a 0.35 Kernel Scale and a Multiclass Method One vs One. The coefficients for this application of PCA are PC1 (79.9%) and PC2 (20.1%). It was concluded that the combined processing and classification of images obtained from Terahertz time-domain spectroscopy and using Machine learning algorithms can be used to classify the different maturity states of blueberries. © 2020 IEEE.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2469
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/EIRCON51178.2020.9254046
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85097846605
url https://hdl.handle.net/20.500.12390/2469
https://doi.org/10.1109/EIRCON51178.2020.9254046
identifier_str_mv 2-s2.0-85097846605
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175567293808640
spelling Publicationrp06265600Cruz J.O.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2020https://hdl.handle.net/20.500.12390/2469https://doi.org/10.1109/EIRCON51178.2020.92540462-s2.0-85097846605Non-destructive determination of blueberry compound using spectral detection method is still a challenge due to the spectral THZ variation caused by abundant biological variations, such as geographic origins and harvest seasons. In order to investigate the potential of Terahertz time-domain spectroscopy to classify fruit maturity states, terahertz spectra (0.5-10 THz) of 4 states of blueberry maturity were examined. The acquired data matrices were submitted to the application of MATLAB 2019b Classification Learner by using 24 classifier models. 84.3 is the highest accuracy, obtained by the Fine Gaussian SVM Algorithm Model with a 0.35 Kernel Scale and a Multiclass Method One vs One. The coefficients for this application of PCA are PC1 (79.9%) and PC2 (20.1%). It was concluded that the combined processing and classification of images obtained from Terahertz time-domain spectroscopy and using Machine learning algorithms can be used to classify the different maturity states of blueberries. © 2020 IEEE.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengInstitute of Electrical and Electronics Engineers Inc.Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020info:eu-repo/semantics/openAccessTerahertz spectroscopyBlueberry-1Principal component Analysis-1http://purl.org/pe-repo/ocde/ford#4.01.01-1Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturityinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2469oai:repositorio.concytec.gob.pe:20.500.12390/24692024-05-30 16:08:30.329http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="63328e70-68e7-486a-b68e-af66f4bdb112"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Terahertz Time-domain Spectroscopy (THz-TDS) for classification of blueberries according to their maturity</Title> <PublishedIn> <Publication> <Title>Proceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020</Title> </Publication> </PublishedIn> <PublicationDate>2020</PublicationDate> <DOI>https://doi.org/10.1109/EIRCON51178.2020.9254046</DOI> <SCP-Number>2-s2.0-85097846605</SCP-Number> <Authors> <Author> <DisplayName>Cruz J.O.</DisplayName> <Person id="rp06265" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Institute of Electrical and Electronics Engineers Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Terahertz spectroscopy</Keyword> <Keyword>Blueberry</Keyword> <Keyword>Principal component Analysis</Keyword> <Abstract>Non-destructive determination of blueberry compound using spectral detection method is still a challenge due to the spectral THZ variation caused by abundant biological variations, such as geographic origins and harvest seasons. In order to investigate the potential of Terahertz time-domain spectroscopy to classify fruit maturity states, terahertz spectra (0.5-10 THz) of 4 states of blueberry maturity were examined. The acquired data matrices were submitted to the application of MATLAB 2019b Classification Learner by using 24 classifier models. 84.3 is the highest accuracy, obtained by the Fine Gaussian SVM Algorithm Model with a 0.35 Kernel Scale and a Multiclass Method One vs One. The coefficients for this application of PCA are PC1 (79.9%) and PC2 (20.1%). It was concluded that the combined processing and classification of images obtained from Terahertz time-domain spectroscopy and using Machine learning algorithms can be used to classify the different maturity states of blueberries. © 2020 IEEE.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.448654
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).