Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods
Descripción del Articulo
Fe 50 Ni 50 alloy powder was prepared by milling the 1:1 stoichiometric mixture of Fe and Ni high purity elements using high energy vibrational ball-mill. Final powdered material was obtained directly after 30 h of milling process and the Rietveld analysis of the X-ray diffraction pattern of the sam...
Autores: | , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2719 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2719 https://doi.org/10.1016/j.matchar.2019.01.036 |
Nivel de acceso: | acceso abierto |
Materia: | X-ray diffraction Extended X-ray absorption fine structure Mechanical alloying Mössbauer spectroscopy Nanostructured materials http://purl.org/pe-repo/ocde/ford#1.03.01 |
id |
CONC_ba32df24d092c1123a07c096ff5b6296 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2719 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods |
title |
Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods |
spellingShingle |
Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods Rodríguez V.A.P. X-ray diffraction Extended X-ray absorption fine structure Mechanical alloying Mössbauer spectroscopy Nanostructured materials http://purl.org/pe-repo/ocde/ford#1.03.01 |
title_short |
Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods |
title_full |
Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods |
title_fullStr |
Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods |
title_full_unstemmed |
Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods |
title_sort |
Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods |
author |
Rodríguez V.A.P. |
author_facet |
Rodríguez V.A.P. Rojas-Ayala C. Medina J.M. Cabrera P.P. Quispe-Marcatoma J. Landauro C.V. Tapia J.R. Baggio-Saitovitch E.M. Passamani E.C. |
author_role |
author |
author2 |
Rojas-Ayala C. Medina J.M. Cabrera P.P. Quispe-Marcatoma J. Landauro C.V. Tapia J.R. Baggio-Saitovitch E.M. Passamani E.C. |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Rodríguez V.A.P. Rojas-Ayala C. Medina J.M. Cabrera P.P. Quispe-Marcatoma J. Landauro C.V. Tapia J.R. Baggio-Saitovitch E.M. Passamani E.C. |
dc.subject.none.fl_str_mv |
X-ray diffraction |
topic |
X-ray diffraction Extended X-ray absorption fine structure Mechanical alloying Mössbauer spectroscopy Nanostructured materials http://purl.org/pe-repo/ocde/ford#1.03.01 |
dc.subject.es_PE.fl_str_mv |
Extended X-ray absorption fine structure Mechanical alloying Mössbauer spectroscopy Nanostructured materials |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.03.01 |
description |
Fe 50 Ni 50 alloy powder was prepared by milling the 1:1 stoichiometric mixture of Fe and Ni high purity elements using high energy vibrational ball-mill. Final powdered material was obtained directly after 30 h of milling process and the Rietveld analysis of the X-ray diffraction pattern of the sample reveals the presence of two Fe–Ni phases: the disordered ?–(Fe 45 Ni 55 ) alloy, with 91% of total fraction of the material (Fe–Ni solid solution plus grain boundary regions) and the chemically-ordered FeNi phase (9%), with L1 0 tetragonal structure. Average grain sizes of these Fe–Ni phases are respectively 60 nm and 20 nm. Results of extended X-ray absorption fine structure of Ni and Fe as well as 57 Fe Mössbauer spectroscopy also suggest the presence of atomically ordered FeNi phase. Mössbauer data have also shown that both Fe–Ni phases are magnetically ordered at room temperature. Our results indicate that high energy milling method can simulate extreme conditions of sample preparation required for the formation of the T-FeNi phase. © 2019 |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2719 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.matchar.2019.01.036 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85061193201 |
url |
https://hdl.handle.net/20.500.12390/2719 https://doi.org/10.1016/j.matchar.2019.01.036 |
identifier_str_mv |
2-s2.0-85061193201 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Materials Characterization |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier Inc. |
publisher.none.fl_str_mv |
Elsevier Inc. |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175488599228416 |
spelling |
Publicationrp01943600rp07239600rp07242600rp07241600rp01110600rp00840600rp07240600rp02003600rp01941600Rodríguez V.A.P.Rojas-Ayala C.Medina J.M.Cabrera P.P.Quispe-Marcatoma J.Landauro C.V.Tapia J.R.Baggio-Saitovitch E.M.Passamani E.C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2719https://doi.org/10.1016/j.matchar.2019.01.0362-s2.0-85061193201Fe 50 Ni 50 alloy powder was prepared by milling the 1:1 stoichiometric mixture of Fe and Ni high purity elements using high energy vibrational ball-mill. Final powdered material was obtained directly after 30 h of milling process and the Rietveld analysis of the X-ray diffraction pattern of the sample reveals the presence of two Fe–Ni phases: the disordered ?–(Fe 45 Ni 55 ) alloy, with 91% of total fraction of the material (Fe–Ni solid solution plus grain boundary regions) and the chemically-ordered FeNi phase (9%), with L1 0 tetragonal structure. Average grain sizes of these Fe–Ni phases are respectively 60 nm and 20 nm. Results of extended X-ray absorption fine structure of Ni and Fe as well as 57 Fe Mössbauer spectroscopy also suggest the presence of atomically ordered FeNi phase. Mössbauer data have also shown that both Fe–Ni phases are magnetically ordered at room temperature. Our results indicate that high energy milling method can simulate extreme conditions of sample preparation required for the formation of the T-FeNi phase. © 2019Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier Inc.Materials Characterizationinfo:eu-repo/semantics/openAccessX-ray diffractionExtended X-ray absorption fine structure-1Mechanical alloying-1Mössbauer spectroscopy-1Nanostructured materials-1http://purl.org/pe-repo/ocde/ford#1.03.01-1Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methodsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2719oai:repositorio.concytec.gob.pe:20.500.12390/27192024-05-30 16:10:48.043http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="31f50e12-8f5f-4aff-b9f0-ba5e64d8f6dd"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods</Title> <PublishedIn> <Publication> <Title>Materials Characterization</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1016/j.matchar.2019.01.036</DOI> <SCP-Number>2-s2.0-85061193201</SCP-Number> <Authors> <Author> <DisplayName>Rodríguez V.A.P.</DisplayName> <Person id="rp01943" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rojas-Ayala C.</DisplayName> <Person id="rp07239" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Medina J.M.</DisplayName> <Person id="rp07242" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cabrera P.P.</DisplayName> <Person id="rp07241" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Quispe-Marcatoma J.</DisplayName> <Person id="rp01110" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Landauro C.V.</DisplayName> <Person id="rp00840" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Tapia J.R.</DisplayName> <Person id="rp07240" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Baggio-Saitovitch E.M.</DisplayName> <Person id="rp02003" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Passamani E.C.</DisplayName> <Person id="rp01941" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>X-ray diffraction</Keyword> <Keyword>Extended X-ray absorption fine structure</Keyword> <Keyword>Mechanical alloying</Keyword> <Keyword>Mössbauer spectroscopy</Keyword> <Keyword>Nanostructured materials</Keyword> <Abstract>Fe 50 Ni 50 alloy powder was prepared by milling the 1:1 stoichiometric mixture of Fe and Ni high purity elements using high energy vibrational ball-mill. Final powdered material was obtained directly after 30 h of milling process and the Rietveld analysis of the X-ray diffraction pattern of the sample reveals the presence of two Fe–Ni phases: the disordered ?–(Fe 45 Ni 55 ) alloy, with 91% of total fraction of the material (Fe–Ni solid solution plus grain boundary regions) and the chemically-ordered FeNi phase (9%), with L1 0 tetragonal structure. Average grain sizes of these Fe–Ni phases are respectively 60 nm and 20 nm. Results of extended X-ray absorption fine structure of Ni and Fe as well as 57 Fe Mössbauer spectroscopy also suggest the presence of atomically ordered FeNi phase. Mössbauer data have also shown that both Fe–Ni phases are magnetically ordered at room temperature. Our results indicate that high energy milling method can simulate extreme conditions of sample preparation required for the formation of the T-FeNi phase. © 2019</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.439101 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).