Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods

Descripción del Articulo

Fe 50 Ni 50 alloy powder was prepared by milling the 1:1 stoichiometric mixture of Fe and Ni high purity elements using high energy vibrational ball-mill. Final powdered material was obtained directly after 30 h of milling process and the Rietveld analysis of the X-ray diffraction pattern of the sam...

Descripción completa

Detalles Bibliográficos
Autores: Rodríguez V.A.P., Rojas-Ayala C., Medina J.M., Cabrera P.P., Quispe-Marcatoma J., Landauro C.V., Tapia J.R., Baggio-Saitovitch E.M., Passamani E.C.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2719
Enlace del recurso:https://hdl.handle.net/20.500.12390/2719
https://doi.org/10.1016/j.matchar.2019.01.036
Nivel de acceso:acceso abierto
Materia:X-ray diffraction
Extended X-ray absorption fine structure
Mechanical alloying
Mössbauer spectroscopy
Nanostructured materials
http://purl.org/pe-repo/ocde/ford#1.03.01
id CONC_ba32df24d092c1123a07c096ff5b6296
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2719
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods
title Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods
spellingShingle Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods
Rodríguez V.A.P.
X-ray diffraction
Extended X-ray absorption fine structure
Mechanical alloying
Mössbauer spectroscopy
Nanostructured materials
http://purl.org/pe-repo/ocde/ford#1.03.01
title_short Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods
title_full Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods
title_fullStr Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods
title_full_unstemmed Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods
title_sort Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods
author Rodríguez V.A.P.
author_facet Rodríguez V.A.P.
Rojas-Ayala C.
Medina J.M.
Cabrera P.P.
Quispe-Marcatoma J.
Landauro C.V.
Tapia J.R.
Baggio-Saitovitch E.M.
Passamani E.C.
author_role author
author2 Rojas-Ayala C.
Medina J.M.
Cabrera P.P.
Quispe-Marcatoma J.
Landauro C.V.
Tapia J.R.
Baggio-Saitovitch E.M.
Passamani E.C.
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Rodríguez V.A.P.
Rojas-Ayala C.
Medina J.M.
Cabrera P.P.
Quispe-Marcatoma J.
Landauro C.V.
Tapia J.R.
Baggio-Saitovitch E.M.
Passamani E.C.
dc.subject.none.fl_str_mv X-ray diffraction
topic X-ray diffraction
Extended X-ray absorption fine structure
Mechanical alloying
Mössbauer spectroscopy
Nanostructured materials
http://purl.org/pe-repo/ocde/ford#1.03.01
dc.subject.es_PE.fl_str_mv Extended X-ray absorption fine structure
Mechanical alloying
Mössbauer spectroscopy
Nanostructured materials
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.03.01
description Fe 50 Ni 50 alloy powder was prepared by milling the 1:1 stoichiometric mixture of Fe and Ni high purity elements using high energy vibrational ball-mill. Final powdered material was obtained directly after 30 h of milling process and the Rietveld analysis of the X-ray diffraction pattern of the sample reveals the presence of two Fe–Ni phases: the disordered ?–(Fe 45 Ni 55 ) alloy, with 91% of total fraction of the material (Fe–Ni solid solution plus grain boundary regions) and the chemically-ordered FeNi phase (9%), with L1 0 tetragonal structure. Average grain sizes of these Fe–Ni phases are respectively 60 nm and 20 nm. Results of extended X-ray absorption fine structure of Ni and Fe as well as 57 Fe Mössbauer spectroscopy also suggest the presence of atomically ordered FeNi phase. Mössbauer data have also shown that both Fe–Ni phases are magnetically ordered at room temperature. Our results indicate that high energy milling method can simulate extreme conditions of sample preparation required for the formation of the T-FeNi phase. © 2019
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2719
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.matchar.2019.01.036
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85061193201
url https://hdl.handle.net/20.500.12390/2719
https://doi.org/10.1016/j.matchar.2019.01.036
identifier_str_mv 2-s2.0-85061193201
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Materials Characterization
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier Inc.
publisher.none.fl_str_mv Elsevier Inc.
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175488599228416
spelling Publicationrp01943600rp07239600rp07242600rp07241600rp01110600rp00840600rp07240600rp02003600rp01941600Rodríguez V.A.P.Rojas-Ayala C.Medina J.M.Cabrera P.P.Quispe-Marcatoma J.Landauro C.V.Tapia J.R.Baggio-Saitovitch E.M.Passamani E.C.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2719https://doi.org/10.1016/j.matchar.2019.01.0362-s2.0-85061193201Fe 50 Ni 50 alloy powder was prepared by milling the 1:1 stoichiometric mixture of Fe and Ni high purity elements using high energy vibrational ball-mill. Final powdered material was obtained directly after 30 h of milling process and the Rietveld analysis of the X-ray diffraction pattern of the sample reveals the presence of two Fe–Ni phases: the disordered ?–(Fe 45 Ni 55 ) alloy, with 91% of total fraction of the material (Fe–Ni solid solution plus grain boundary regions) and the chemically-ordered FeNi phase (9%), with L1 0 tetragonal structure. Average grain sizes of these Fe–Ni phases are respectively 60 nm and 20 nm. Results of extended X-ray absorption fine structure of Ni and Fe as well as 57 Fe Mössbauer spectroscopy also suggest the presence of atomically ordered FeNi phase. Mössbauer data have also shown that both Fe–Ni phases are magnetically ordered at room temperature. Our results indicate that high energy milling method can simulate extreme conditions of sample preparation required for the formation of the T-FeNi phase. © 2019Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengElsevier Inc.Materials Characterizationinfo:eu-repo/semantics/openAccessX-ray diffractionExtended X-ray absorption fine structure-1Mechanical alloying-1Mössbauer spectroscopy-1Nanostructured materials-1http://purl.org/pe-repo/ocde/ford#1.03.01-1Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methodsinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2719oai:repositorio.concytec.gob.pe:20.500.12390/27192024-05-30 16:10:48.043http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="31f50e12-8f5f-4aff-b9f0-ba5e64d8f6dd"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Fe 50 Ni 50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods</Title> <PublishedIn> <Publication> <Title>Materials Characterization</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1016/j.matchar.2019.01.036</DOI> <SCP-Number>2-s2.0-85061193201</SCP-Number> <Authors> <Author> <DisplayName>Rodríguez V.A.P.</DisplayName> <Person id="rp01943" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Rojas-Ayala C.</DisplayName> <Person id="rp07239" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Medina J.M.</DisplayName> <Person id="rp07242" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Cabrera P.P.</DisplayName> <Person id="rp07241" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Quispe-Marcatoma J.</DisplayName> <Person id="rp01110" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Landauro C.V.</DisplayName> <Person id="rp00840" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Tapia J.R.</DisplayName> <Person id="rp07240" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Baggio-Saitovitch E.M.</DisplayName> <Person id="rp02003" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Passamani E.C.</DisplayName> <Person id="rp01941" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Elsevier Inc.</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>X-ray diffraction</Keyword> <Keyword>Extended X-ray absorption fine structure</Keyword> <Keyword>Mechanical alloying</Keyword> <Keyword>Mössbauer spectroscopy</Keyword> <Keyword>Nanostructured materials</Keyword> <Abstract>Fe 50 Ni 50 alloy powder was prepared by milling the 1:1 stoichiometric mixture of Fe and Ni high purity elements using high energy vibrational ball-mill. Final powdered material was obtained directly after 30 h of milling process and the Rietveld analysis of the X-ray diffraction pattern of the sample reveals the presence of two Fe–Ni phases: the disordered ?–(Fe 45 Ni 55 ) alloy, with 91% of total fraction of the material (Fe–Ni solid solution plus grain boundary regions) and the chemically-ordered FeNi phase (9%), with L1 0 tetragonal structure. Average grain sizes of these Fe–Ni phases are respectively 60 nm and 20 nm. Results of extended X-ray absorption fine structure of Ni and Fe as well as 57 Fe Mössbauer spectroscopy also suggest the presence of atomically ordered FeNi phase. Mössbauer data have also shown that both Fe–Ni phases are magnetically ordered at room temperature. Our results indicate that high energy milling method can simulate extreme conditions of sample preparation required for the formation of the T-FeNi phase. © 2019</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.439101
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).