A Low-Resourced Peruvian Language Identification Model

Descripción del Articulo

Due to the linguistic revitalization in Peru´ through the last years, there is a growing interest to reinforce the bilingual education in the country and to increase the research focused in its native languages. From the computer science perspective, one of the first steps to support the languages s...

Descripción completa

Detalles Bibliográficos
Autores: Linares A.E., Oncevay-Marcos A.
Formato: objeto de conferencia
Fecha de Publicación:2017
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/488
Enlace del recurso:https://hdl.handle.net/20.500.12390/488
Nivel de acceso:acceso abierto
Materia:Learning systems
Big data
Education
Information management
Automatic language identification
Bilingual education
Complex task
https://purl.org/pe-repo/ocde/ford#6.02.00
Descripción
Sumario:Due to the linguistic revitalization in Peru´ through the last years, there is a growing interest to reinforce the bilingual education in the country and to increase the research focused in its native languages. From the computer science perspective, one of the first steps to support the languages study is the implementation of an automatic language identification tool using machine learning methods. Therefore, this work focuses in two steps: (1) the building of a digital and annotated corpus for 16 Peruvian native languages extracted from documents in web repositories, and (2) the fit of a supervised learning model for the language identification task using features identified from related studies in the state of the art, such as ngrams. The obtained results were promising (97% in average precision), and it is expected to take advantage of the corpus and the model for more complex tasks in the future.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).